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Abstract : In this model, we study a batch arrival queueing system 

with second optional service interruption of three phase vacation 

based on  Bernoulli schedule. Batches arrives in poission with mean 

arrival rate (λ >0), such that all customers demand the first essential 

service, where  some of them demand the second optional service.  

The service times of the  first essential service and the second 

optional service are assumed to follow general (arbitrary) distribution 

with distribution function B1(v)and (v)respectively.  After every 

service completion the server has the option to leave for phase one 

vacation of random length with probability p or to continue staying in 

the system with probability 1-p. As soon as the completion of phase 

one vacation, the server undergoes phase two and phase three 

vacations. On completion of three heterogeneous phase of vacation 

the server return back to the system.  The vacation times are assumed 

to be general.  The server is interrupted at random  follows 

exponential distribution. Also we assume, the customer whose 

service is interrupted goes back to the head of the queue where the 

arrivals are Poisson. The time dependent probability generating 

function  have been obtained interms of Laplace transform  and 

corresponding steady state results have been derived explicity.Mean 

queue length and mean waiting time are also derived. 

 

Keywords: Batch arrival,  Probability Generating Function,  Service 

Interruption,Three phases of vacation . 
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1. INTRODUCTION 

 

Queuing systems with 

server vacations and/or random 

system breakdowns have been 

studied by numerous researchers 

including the survey of Doshi [5], 

Kulkarni(13) and Choi [13], Takagi, 

Takine and Sengupta [30], Wang et 

al, Madan etc.[9], Tian and Zhang, 

Maraghi et al and Thangaraj  and 

Vanitha. However, in these models, 

the server stops the original work in 

the vacation period and  can not 

come back to the regular busy period 

until the vacation period ends. In 

queueing theory periods of 

temporary service unavailability are 

referred to as server vacations, server 

interruptions or server breakdowns. 

 Queueing models with 

service interruptions have proved to 

be a useful abstraction in situations 

where a service facility is shared by 

multiple queues or where the 

facilities subject to failure. White 

and Christie have studied queues 

with service interruptions. They 

consider an M/M/1 queueing system 

with exponentially distributed 

interruptions. Generally distributed 

service times and interruptions are 

considered by Avi-Itzhak and Naor 

Vacation queues with c servers have 

been studied by Tian et al. . 

Borthakur and Choudhury [8] have 

studied vacation queues with batch 

arrivals. We assume that the 

customers arrive to the service 

station in batches of variable size, 

but are served one by one. We 

assume that the service times, 

vacation times, have a general 

distribution while the time to 

interruptions is exponentially 

distributed. Most of the recent 

studies have been devoted to batch 

arrival. In this paper, we consider a 

batch arrival queueing system 

M
[X]/

G/1 with service interruption, in 

which we assume that after every 

service completion, the server has 

the option to leave for a vacation of 

random length with probability or to 

continue staying in the system with 

probability 1-p.The vacation period 

has three heterogeneous phases. On 

completion of three vacation phases 

the server return back to the system. 

Also we assume, the customer whose 

service is interrupted goes back to 

the head of the queue where the 

arrivals are Poisson. This paper is 

organized as follows. The 

mathematical description of our 

model is given in section 2. 

Definitions and Equations Governing 

the system is given in section 3. The 

time dependent solution has been 

obtained. Section 4 and 

corresponding steady state results 

have been derived. 

 

2. MATHEMATICAL  

DESCRIPTION MODEL 

 

We assume the following to 

describe the queueing model of our 

study. 

(a).Customers arrive at the 

system in batches of variable size in 

a compound Poisson process and 

they are provided one by one service 

on a first come - first served basis. 

Let   λci dt (i = 1, 2, . ..) be the first 

order probability that a batch of ‘ i’ 

customers arrives at the system 
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during a short interval of time (t; t + 

dt], where 0 ci 1 and   = 1 

and λ > 0 is the arrival rate of 

batches. 

b) A single server provides 

service to all arriving customer, with 

the service time having general 

distribution. Let B(v) and b(v)be the 

distribution and the density function 

of the service time respectively. 

c)   As soon as the first 

service of a customer is completed 

,then he demand for the second 

service with probability  r , or else he 

may decide to leave the system with 

probability (1-r) with out getting 

optional service in which case 

another customer at the head of the 

queue (if any ) is taken up for his 

first essential service. 

 d) we assume interruptions 

arrive at random while serving the 

customers and assumed to occur 

according to a Poisson process with 

mean rate α > 0. Let β  be the server 

rate of attending interruption. Further 

we assume that once the interruption 

arrives the customer whose service is 

interrupted comes back to the head 

of the queue. Let µ(x)dx be the 

conditional probability of completion 

of the service during the interval (x; 

x + dx] given that the elapsed time is 

x, so that  

µ(x) =   and therefore 

b(s)=µ(s) c , 

d) As soon as the service is 

over, the server may take a vacation 

with probability  p or may continue 

staying in the system with 

probability 1-p. After   phase one 

vacation completion the server 

undergoes phase two and phase three 

vacations. On completion 

of three phase of vacation 

the server return back to the system. 

e) The server’s vacation 

time follows a general (arbitrary) 

distribution with distribution 

function Vi(t) and density function 

vi(t). Let   dx be the conditional 

probability of a completion of a 

vacation during the interval (x; x + 

dx] given that the elapsed vacation 

time is x, so that  

   = i = 1,2,3 

and fore (t)= (t)  

f) On returning from 

vacation the server instantly starts 

serving the customer at the head of 

the queue if any. 

3.  DEFINITIONS AND 

EQUATIONS GOVERNING THE 

SYSTEM 

 

(i)  (x, t) = probability that at time 

't' the server is active providing 

 service  and there are 

'n' (n≥1) customers in the 

queue including the one being 

served and the elapsed service 

time for this customer is x. 

Consequently (t) denotes the 

probability that at time 't' there 

are 'n' customers in the queue 

excluding the one customer in 

i
th

 service irrespective of the 

value of x.  

(ii) Vn(x,t) = probability that at time 

’t’, the server is  under vacation  

with elapsed vacation time x, 

and there are 'n'(n≥1) 

customers waiting in the queue 

for service. Consequently (t)  
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=

denotes the probability 

that at time 't' there are 'n' 

customers in the queue and the 

server is on vacation 

irrespective of the value of x.  

(iii) Rn(t)=Probability that at time t, 

the server is inactive  due to the 

arrival of interruption. 

(iv) Q(t) = probability that at time 't' 

there are no customers in the 

system and the server is idle 

but available in the system .  

 

The queueing model is then, 

governed by the following set of 

differential-difference equations:  

 

(x,t) + (x,t) +(λ+ (x) 

+α )  (x,t) =             

λ   (x,t) ;n                 

(5) 

(x,t) + (x,t) +(λ+ (x) 

+α )  (x,t) =0    (6) 

(x,t) + (x,t) +(λ+ (x) 

+α )  (x,t) =   

 λ   (x,t) ;n                 

(7) 

(x,t) + (x,t) +(λ+ (x) 

+α )  (x,t) = 0         (8) 

(x,t) + (x,t) +(λ+ (x)  ) 

 (x,t) =  λ   

                   (x,t) ;n , 

i=1,2,3                (9)   

(x,t) + (x,t) +(λ+ (x)  ) 

 (x,t) = 0  

                 i = 1,2,3     

               (10) 

(t)  = - ( (t)                                                      

(11) 

(t) = - ( (t) + λ   (t) 

+ α  (x,t)dx +   

  (x,t) dx                        (12)                                                                                                                                                                                                                                      

 Q(t) = - λQ (t) + β (t) + (x) (x,t) 

dx + (1-p) (1-r) (x,t) (x)dx +  (1-p)  

(1-r) (x,t) (x) dx               (13) 

Equations (5) to (13) are to be solved 

subject to the following boundary 

conditions. 

 λ Q(t) + (t) + 

(1-p)(1- r) (x,t) (x)dx + (1-

p) (x,t) (x)dx   

 + (t) (x)dx,  

n                     (14) 

 (0,t) = r (x,t) (x) dx,  

n                    (15)                                                                          

 P(1-

r) (x,t) (x)dx + 

P (t) (x)dx,  n

                (16) 

 = (x,t) (x)dx, 

n      (17) 

 = (x,t) (x)dx, 

n      (18) 

We assume that initially there are no 

customers in the system and the 

server is idle.  so the initial 

Conditions are with  

Q(0)=1, (0)= =0, (0) = 0 

and =0, n    

  i=1,2, j=1,2,3.            

(19)      
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4.  THE TIME DEPENDENT 

SOLUTION 

 

Generating function of the queue 

length ; we define the Probability 

generating functions as follows 

(x,z,t) = (x,t) ;   i=1,2 

(z,t) = (t) ;   i=1,2 

(x,z,t) = (x,t) ,   

(z,t) = (t) ,  

           for j= 1,2,3                             

(20)   

(z,t) = (t)  

C(z) =  

Which are Convergent inside the 

circle given by and define 

the laplace transform of a function 

f(t) as  (s)= f(t) dt,  R(S) > 0                                  

(21)     

Taking Laplace transform of 

equation (5) to (18) and usind using 

(19), we get 

 (x,s) + (S+λ+ (x)+α) 

(x,s) =λ                

(x,s), 

n                            (22)   

 (x,s) + (S+λ+ (x)+α) 

(x,s) = 0                        (23)                                            

 (x,s) + (S+λ+ (x)+α) 

(x,s) =λ                                 

  (x,s),      n

                         (24)   

 (x,s) + (S+λ+ (x)+α) 

(x,s) = 0            (25) 

 (x,s) + (S+λ+ (x)) (x,s) 

=λ     

  (x,s), n      

 (26) 

 (x,s) + (S+λ+ (x)) (x,s) 

=0                  (27) 

 (x,s) + (S+λ+ (x)) (x,s) 

=λ              

(x,s), 

n               (28) 

 (x,s) + (S+λ+ (x)) (x,s) 

=0                 (29) 

 (x,s) + (S+λ+ (x)) (x,s) 

=λ           

 (x,s), n             

(30) 

 (x,s) + (S+λ+ (x)) (x,s) 

=0                 (31) 

 (S+λ+β)  (S) = λ  s) 

+ α  (x,s)dx +   

          α  (x,s)dx           

(32)                        (S+λ+β) (S) =  

0                        

(32a)    

 (S+λ) (S) = 1+β (S)+(1-p) (1-

r) (x,s) (x)dx+ 

                          (1-

P) (x,s) (x)dx         

 

 + (x,s) (x)dx              

(33)                   

 

 

(0,S) = λ (S) + β (S) +  

                (1-r)(1-

p) (x,s) (x)dx  + 

             (1-

p) (x,s) (x)dx+ (x,s)

(x)dx        
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 ,n ,                       

 (34)                         

(0,S) = r (x,s) (x)dx 

,n                                (35)                                                  

(0,s)  =  p (1-

r) (x,s) (x)dx +   

    

p (x,s) (x)dx                          

(36)                          

    (0,s) = (x,s) (x)dx   

,n                               (37)                                                                                      

     (x,s) =   

,n                          (38)                                                                                

Now multiplying (22) by  and 

summing over n from 1 to  , adding 

to equation (23) and using the 

definition of probability generating 

function , we obtain 

 (x,z,s) + (S+λ-λ c(z) 

+ (x)+α) (x,z,s) =0           (39)                                             

Performing similar operations on 

equation (24) to   (33) 

 (x,z,s) + (S + λ –λ 

c(z)+ (x)+α) (x,z,s)  = 0       

(40)                                              

(x,z,s) + (S + λ –λ c(z)+ (x)) 

(x,z,s)  = 0           (41)                                         

 (x,z,s) + (S + λ –λ c(z)+ (x)) 

(x,z,s)  = 0           (42)                                          

 (x,z,s) + (S + λ –λ c(z)+ (x)) 

(x,z,s)  = 0           (43)                                                

(S + λ-λ c(z) +β )  z,s)  = αz 

(x,z,s) dx + αz 

(x,z

,s) dx       (44)                                       

 for the boundary condition multiply  

both sides of equation (34) by  , 

summing over 1 to  by using the 

definition of probability generating 

function  equation ,we get 

Z (0,z,s) =(1-r) )(1-

p) (x,z,s) (x)dx 

+ (1-  p) (x,z,s) (x)dx + 

(x,z,s) (x)dx + 

                λ[C(z)-1] (S) +[1-

 S (S)] + β  (z,s)              

(45)                      Performing similar 

operation on equation (35) to (38) we 

obtain 

(0,Z,S) = r (x,z,s) (x)dx

                 (46) 

(0,Z,S) = P(1-r) 

(x,z,t) (x)dx+P (x,z,t

) (x)dx,                    

 n                

 (47) 

(0,Z,S) = (x,z,s) (x)dx,

                                 (48) 

  (0,Z,S ) = (x,z,s) (x)dx  

                                 (49) 

Intergrating the equation (39) from 0 

to x yields 

(x,Z,S) 

= (0,Z,S)

            

(50)                                           

 where     (0,Z,S) is given by (45) 

, Again integerating equation (50) by 

parts w. r. to x yields  

(x,Z,S) 

= (0,Z,S)                

(51)                                                            

where 1(s+λ-λC(z)+α)= 
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 d (x)   is the 

laplace transform of the first 

essential service  (x) . Now 

multiplying both sides of equation 

(50) by (x) and integrating over x, 

we get 

 

 (52) 

Similarly as Integrating equation 

(40) to (43) from 0 to , we get  

(x,z,s) = 

(0,z,s)                   

(53)        (x,z,s) = 

(0,z,s)                                

(54) 

  (x,z,s) 

= (0,z,s)                 

(55) (x,z,s) = 

(0,z,s)                 

(56)                 Again Integrating 

from (53) to (56) 

(Z,S) 

= (0,Z,S)                         

(57)                 (Z,S) 

= (0,Z,S)                             

(58)                  (Z,S) 

= (0,Z,S)                             

(59)        (Z,S) 

= (0,Z,S)                             

(60)      Where  (s+λ-λC(z))= 

  d (x)               

(61)            

(s+λ-λC(z))=  d  

(x)                            (62)       (s+λ-

λC(z))=  d  (x)                            

(63)  

is the laplace – stielfjes transform of 

the first phase, second phase and 

third phase of varation time  (x), 

 (x),and  (x) respectively Now 

multiplying both sides of equations 

(53) by (x) and integrating over x,  

we get  

(x,z,s) (x)dx = (0,z,s) 

(s+λ-λc(z)+α)          (64)           

Now using equation (52), equation 

(46) reduces to 

(0,z,s) = r (0,z,s) (s+λ-

λc(z)+α)                          (65) 

 Now multiplying both sides of 

equations (54), (55), (56) by γ1(x), 

γ2(x) and γ3(x), integrating over x 

we obtain  

(x,z,s) (x)dx = (0,z,s) 

(s+λ-λc(z))             (66)           

(x,z,s) (x)dx = (0,z,s) 

(s+λ-λc(z))             (67)                  

(x,z,s) (x)dx = (0,z,s) 

(s+λ-λc(z))             (68)                                                    

the equation (57) becomes 

 (z,s) = r 

(0,z,s)

                             

                                                                            

(69) 

Now using equation (52), (64), (65) 

equation (47) 

( 0,z,s)   =   p(1-r)  (0,z,s) 

(s+λ-λc(z)+α)   +  

                   p r  (0,z,s) (s+λ-

λc(z)+α) (70)                                                                               
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Using above equation (70), equation 

(58),(59),and (60) becomes 

( z,s)  = (0,z,s)

 

  

      (71) 

( z,s)  = (0,z,s)

 

(s+λ-

λc(z))           

 (72)   

( z,s)  = (0,z,s)

   (s+λ- 

λc(z)) (s+λ-λc(z))      

   (73) 

where (z) = s+λ-λc(z)+α. using 

equation (51), (64) and (65), 

equation (44) becomes 

    (z,s) = 

     

(74)  

where f2(z) = s+λ-λc(z)+β.  Now 

using equation (52),(64),(66) and 

(740 in equation (45) and 

 solving for   (0,z,s),we get  

(0,z,s)=

  where  

Dr=f1(z) f2(z) {

}  

- αβz

                                             

   

  (76)                                                                                              

Substituting the value of (0,z,s) 

from equation (74) in to (51), (57), 

(58), (59) & 60 

We get 

(z,s) = 

                                  

(77)                                            

(z,s) = 

           

(78)                                                         

(z,s) = 

 

     

(79)                                             

(z,s) = 

  

) 

                                                                                          

(80) 

(z,s) = 

 

                                                                                                                      

                                              

                       (81)                                                                                              

  5. THE STEADY STATE 

ANALYSIS 
 In this section, derive the 

steady state probability distribution 

for our queueing model.  To define 

the steady state probabilities, 

suppress.  The argument ‘t’ wherever 

it appears in the time dependent 

analysis 

    = f(t)                                                                 

(82)                                                            

Multiplying both sides of equation 

(77), (78), (79), (80), (81) by and 
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applying Property (82) and 

simplifying, we get 

(z) =                                               

(83)             (z) 

==                               

(84)            

(z) = 

 

  

        (85)           (z) = 

 

    

          (86)   

(z) = 
  

 (z) = 

           

    

  (87)              

 Let  (Z) denotes the PGF 

of queue size irrespective of the state 

of the system.  Then adding  (85), 

(86), (87), & (88)     

(Z) =   (z) +  (z)+  (z)+  

(z)+  (z)+  (z)          

               (88)                        

In order to obtain Q, using the 

normalization condition       

(1) + Q = 1     

We see that for Z=1, (Z) is 

indeterminate of the frrm %.  We 

apply L Hospital’s rule in equ(88),. 

where Bi(0)=i=1,2, 

(1)=a, (1)=E(I) is mean batch size 

if the arriving customers 

V(0)=1, (v), (vi)=i=1,2,3.. 

the mean vacation time 

 (1) =                                              

 (89) 

 (1) =                                     

(90)                (1) = 

 

     (91)                         (1) = 

 

     (92)                                 

 (1) = 

 

     (93)                                

 (1) =  

                

94)          

Where dr = 

- λα β 

P E(I)E(V)[(1-r) 

] 

(1) =   (1) +  (1)+  (1)+  

(1)+  (1)+  (1)  

=

 

  (95) 

Q = 1-λE(I) 

] 

+ – 

.                 (96)     

Q=1-ρ and the utilization factor ρ of 

the system is given by  

ρ= λE(I) ] + 

 – 

 

 Where ρ<1 is the stability 

condition under which the steady 
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state exists, equation (96) gives the 

Probability that the server is idle. 

6.THE AVERAGE QUEUE SIZE  

 Let Lq denote the mean 

number of customers in the queue 

under the steady state then

  z=1 snice this 

gives % form we write 

 where N(Z) & D(Z) 

are the number and denominator of 

the right hand side of equation (88) 

respectively then we use 

]                  (97) 

where primes and double primes in 

equation (97) denote first and second 

derivation at z=1 respectively 

N(z) = 

 

D(z) = 

 

we  have  

                

            (98) 

    

 

                             

(99)   

                                                
(100) 

 D  (1)=

) 

  

                                                            

(101) 

where E(V2) is the second moment of the 

vacation time and Q has been found in 

equation (96). Then if we substitute the values 

of N  (1), N  (1), D  (1) and D  (1) from 

equations (98),(99),(100),(101)  in to  

equation(97). we obtain Lq in a closed form. 

Mean waiting time of a customer could be 

found as 

wq=  by using Little’s formula. 

7. CONCLUSION 

  In this paper we have studied a 

batch arrival, essential service with 

interruption and three phases of 

vacation. This paper clearly analyzes 

the transient solution, steady state 

results of our queueing system.As a 

future work busy period analysis and 

reliability analysis will be 

determined.  
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