
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 266

 Refinement of Data-Flow Testing using Ant Colony

Algorithm

Abhay Kumar Srivastav

1
, Supriya N S

2

1,2
 Assistant Professor

1,2
Department of MCA,MVJCE Bangalore-560067

Abstract : Search-based optimization techniques

have been implemented to a variety of software

engineering including test generation and cost

estimation. Various search based test generation

techniques have been used. These are the

techniques used only on finding test data to satisfy

control-flow or data-flow testing criteria.

Currently, there are so many search-based

optimization techniques have been implemented

such as Ant Colony Optimization and Bees Colony

Optimization. Ant Colony Optimization have been

used only in control-flow testing of the programs.

The aim of this to applying the Ant Colony

Optimization algorithms in software data-flow

testing. This technique uses the ant colony

optimization to generate test data for satisfying the

generated set of paths.

Keywords- Data-flow testing, path-cover

generation, ant colony optimization algorithms

 INTRODUCTION

There are various activities associated with

software testing such as 1) finding path to cover

criterion 2) test data generation to satisfy the path

3) test execution by using the test data

4) evaluation of test. There are many test-data

generation techniques have been implemented.

Random test-data generation techniques is use to

select inputs as a random data until useful inputs

data are found [1, 2]. This technique some time

fail to satisfy the requirements because information

about the test requirements is not organised.

Symbolic test-data generation techniques is use to

select symbolic values of variables to generate

some algebraic equation for the constraints in the

program and find the solution for these equation

that satisfies a test requirement [3, 4]. Symbolic

execution can't determine that symbolic values

which are more potential values used for array as

A[n] or pointer. Symbolic execution cannot work

on floating point value as a inputs because the

current constraint can’t solve floating point values

 Dynamic test-data generation techniques is use to

collect data during the execution of the program to

determine which test data come nearest to full fill

the requirement. Then test inputs are incrementally

changed until it is not going to full fill the

requirement [5, 6]. Dynamic techniques can work

only when if any local minima has occur because it

depend on local search techniques such as gradient

descent.

Search-based optimization techniques is use to

software engineering activities such as cost

estimation, next release problem and test-data

generation [7]. Several search based test-data

generation techniques have been implemented [8,

9, 10, 11, 12, 13]. Some of these techniques had

focused on finding test data to satisfy a wide range

of control-flow testing criteria (e.g., [8, 10, 11])

and the other techniques had concentrated on

generating test-data for covering a number of data-

flow testing criteria [12, 13, 9].

GENETIC ALGORITHMS is a employed search-based

optimization technique in area of software testing

[7].

There are some search-based optimizations

techniques have been implemented like Ant

Colony Optimization[14, 15], Particle Swarm

Optimization [16], Bees Colony Optimization [17],

and Artificial Immune System [18]. Ant Colony

Optimization has been applied in the area of

software testing in 2003 [19, 20]. Boerner and

Gutjahr [19] described technique which use Ant

Colony Optimization and a software called Markov

Software usage for set of test paths for a software

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 267

system, and McMinn and Holcombe [20] have

given idea on the application of ACO as a

supplementary optimization stage for finding

sequences of transitional statements in generating

test data for evolutionary testing. Srivastava and

Rai [24] proposed an ant colony optimization

based approach to test sequence generation for

control-flow based software testing.

The data-flow testing is important because it

augments control-flow testing criteria and

concentrates on how a variable is defined and used

in the program, which could lead to more efficient

and targeted test suites. The results of using ant

colony optimization algorithms in software

testing which obtained so far are preliminary and

none of the reported results directly addresses the

problem of test-data generation or path cover

finding for data-flow based software testing.

This paper aims at employing the Ant Colony

Optimization algorithms in the issue of software

data-flow testing. The paper presents an ant

colony optimization based on technique for

generating set of optimal paths to cover all

definition use associations in the program under

test. This technique also uses the ant colony

optimization algorithms to generate suite of test

data for satisfying the generated set of paths.

II. BACKGROUND

The basic concepts and definitions are as follows

A. Ant Colony Optimization

Ant Colony Optimization is a population-based,

general search technique for the solution of

difficult combinatorial problems, which is

inspired by the pheromone trail laying

behaviour of real ant colonies. The Ant Colony

Optimization technique is also known as Ant

System [14] and it was applied to the travelling

salesman problem. In Ant Colony Optimization ,

a set of software agents called artificial ants

search for good solutions to a given optimization

problem. To apply Ant Colony Optimization , the

optimization problem is transformed into the

problem of finding the best path on a weighted

graph. The artificial ants (hereafter ants)

incrementally build solutions by moving on the

graph. The solution construction process is

stochastic and is biased by a pheromone model,

i,e a set of parameters associated with graph

components such as nodes or edges whose

values are modified at runtime by the ants.

Figure 1 shows a generic ant colony algorithm.

Step 1: Initialization

 Initialize the pheromone trail

Step 2: Iteration

 For each Ant Repeat

 Solution construction using the current

pheromone trail

 Evaluate the solution constructed

 Update the pheromone trail

 Until stopping criteria

Figure 1. A generic ant colony algorithm

The procedure to solve any optimization

problem using Ant Colony Optimization is:

1) Represent the problem in the form of sets

of components and transitions or by means of a

weighted graph that is travelled by the ants to build

solutions.

2) Appropriately define the meaning of the

pheromone trail, i.e., the type of decision they

bias. This is a crucial step in the implementation of

an ACO algorithm. A good definition of the

pheromone trails is not a trivial task and it

typically requires insight into the problem being

solved.

3) Appropriately define the heuristic preference

to each decision that an ant has to take while

constructing a solution, i.e., define the heuristic

information associated to each component or

transition. Notice that heuristic information is

crucial for good performance if local search

algorithms are not available or cannot be applied.

4) If possible, implement an efficient local

search algorithm for the problem under

consideration, because the results of many ACO

applications to NP-hard combinatorial

optimization problems show that the best

performance is achieved when coupling ACO with

local optimizers.

5) Choose a specific ACO algorithm and apply

it to the problem being solved, taking the

previous aspects into

consideration.

6) Tune the parameters of the ACO algorithm.

A good starting point for parameter tuning is to

use parameter settings that were found to be good

when applying the ACO algorithm to similar

problems or to a variety of other problems.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 268

It should be clear that the above steps can only give

a very rough guide to the implementation of

ACO algorithms. In addition, the

implementation is often an iterative process,

where with some further insight into the

problem and the behaviour of the algorithm; some

initially taken choices need to be revised. Finally,

we want to insist on the fact that probably the most

important of these steps are the first four, because a

poor choice at this stage typically can not be made

up with pure parameter fine-tuning.

An ACO algorithm iteratively performs a loop

containing

the following two basic procedures:

1) A procedure for specifying how the ants

construct/modify solutions of the problem to be

solved;

2) A procedure to update the pheromone trails.

The construction/modification of a solution is

erformed in a probabilistic way. The probability

of adding a new item to the current partial

solution is given by a function that depends on a

problem-dependent heuristic and on the amount

of pheromone deposited by ants on the trail in

the past. The updates in the pheromone trail are

implemented as a function that depends on the rate

of pheromone evaporation and on the quality of

the produced solution.

Data-flow analysis and testing

Typically, in structural testing strategies a

program‘s structure is analyzed on the program

flow-graph, i.e., an annotated directed graph

which represents graphically the information

needed to select the test cases.

A control flow graph is also a directed graph

G=(V,E),with two distinguished nodes— a unique

entry n0 and a unique exit nk .

V is a set of nodes, where each node

represents a statement, and E is a set of

directed edges such as e = (n,m) is an ordered

pair of adjacent nodes, called tail and head of e,

respectively. Figure 2(a) gives an example

program Program1 and figure 2(b) gives its

control-flow graph.

#include<iostream.h>

 void main()

{

int i, j, k, n;

1 cin >> i >> j;

2 if(i < 6)

{

3 k = i;

}

else

{

4 k = j;

}

5 n = k;

6 while(n < 8)

{

7 if(j > k)

{

8 k = 2;

}

else

{

9 n = n + k + 7;

}

10 n = n + 1;

}

11 cout << i<< j << k;

}

(a) (b)

Figure 2. (a) An example program

 (b) it is control-flow graph.

A path p in a control-flow graph is a finite

number of nodes in sequence connected through

edges e.g., 1→2→3→5 and 2→4.The question in

software testing is how to select test cases with

the aim of uncovering as many defects as possible.

There are many activities normally associated with

software testing such as 1) path-cover finding to

cover a certain testing criterion 2) test data

generation to satisfy the path cover, 3) test

execution involving the use of test data and the

software under test (SUT) and 4) evaluation of test

results. Coverage criteria require that a set of

entities of the program control-flow graph to be

covered when the tests are executed. A set of

complete paths (path cover) satisfy a criterion

if it covers the set of entities associated with

that criterion. Depending on the criterion selected,

the entities to be covered may be derived from the

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 269

program control flow or form the program data

flow. Frankl and Weyuker in [28, 29] defined a

family of popular control flow and data flow

test coverage criteria.

Data-flow testing considers the possible

interactions between definitions and uses of

variables.

The variable in a program can be associated

with the following events:

 A statement storing a value in a memory creates

a definition of the variable.

 A statement accessing a value from the memory

location of a variable is a use of the currently

active definition of the variable. when the

variable appears on the right-hand side of an

assignment statement it is called as

computational use (c-use), when the variable

appears in the predicate of the conditional

statement it is called as predicate use (p-use)

[29].

 A statement delete the currently active

definition of a variable if its value becomes

unbound.

A path is definition clear path with respect to

a variable if it contains no new definition of that

variable. Data flow analysis determines the

definitions of every variable in the program and

the uses that might be affected by these definitions

(i.e. the du-pairs). Such data flow relationships

can berepresented by the following two sets:

 dcu(i), the set of all variable definition which

have definition clear paths for node i;

 dpu(i, j), the set of all variable definitions for

which they have definition clear paths for their

p-uses at edge (i,j) [30]

Using information concerning the location of

variable definitions and uses, together with the

basic static reach algorithm‘ [31], the sets

dcu(i) and dpu(i, j) can be determined [30].

Tables 1 and 2 show samples of the du-pairs of

Program1.

TABLE V. LIST OF DCU-PAIRS FOR

PROGRAM1.

Dcu Variable Def-

node

Use-

node

Killing

nodes

1 A 1 3 None

2 C 8 9 3,4

TABLE VI. LIST OF DPU-PAIRS OF

PROGRAM1

Dcu Variable Def-

node

Use-

node

Killing

nodes

1 A 1 2,3 None

2 n 5 6,7 10

VI. CONCLUSION AND FUTURE WORK

To our knowledge, this paper is the first work

using ACO in the issue of data-flow testing.

This paper aims at employing the Ant Colony

Optimization algorithms in the issue of

software data-flow testing. The paper

presented an ant colony optimization based

approach for generating set of optimal paths to

cover all definition-use associations (du-

pairs) in the program under test. This

approach uses also the ant colony

optimization algorithms to generate suite of

test-data for satisfying the generated set of

paths. The ant colony algorithms are adopted

to search the CFG and a model built on the

program input domain in order to get the path

cover and the test data that satisfies the selected

path Our future work will focus on estimates

the efficiency of ant colony optimization

algorithms against genetic algorithms in this

area. In addition, we will concentrate on

solving the problem of constructing the

searching model for the program with input

variable of boolean and character type.

REFERENCES

1] H. D. Mills, M. D. Dyer, and R. C.

Linger, ―Cleanroom software

engineering,‖ IEEE Software, vol. 4, pp. 19-25,

1987.

[2] J. M. Voas, L. Morell, and K. W. Miller,

―Predicting where faults can

hide from testing,‖ IEEE, vol. 8, pp. 41-48,

1991.

[3] W. E. Howden, ―Symbolic testing and

the DISSECT symbolic evaluation system,‖

IEEE Transactions on Software Engineering,

vol. 3, no. 4, 266-278, 1977.

[4] T. E. Lindquist, and J. R. Jenkins,

―Test-case generation with IOGen, IEEE

Software,‖ vol. 5, no. 1, pp. 72-79, 1988.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 2; February -2015

 www.ijcrd.com Page 270

[5] R. Ferguson and B. Korel, ―The chaining

approach for software test data generation,‖

ACM TOSEM, vol. 5, pp. 63-86, 1996.

[6] B. Korel, ―Automated software test

data generation,‖ IEEE Trans. on Software

Engineering, vol. 16, pp. 870-879, 1990.

[7] M. Harman, "The current state and

future of search based software engineering,"

Proc. of the International Conference on

Future of Software Engineering (FOSE‘07),

May 2007, pp. 342-357. IEEE Press.

[8] R. P. Pargas, M. J. Harrold, and R. R. Peck,

―Test data generation using genetic

algorithms, Journal of Software Testing,‖

Verifications, and Reliability, vol. 9, pp. 263-

282, 1999.

[9] A. S. Ghiduk, M. J. Harrold, M. R. Girgis,

―Using genetic algorithms to aid test-data

generation for data flow coverage,‖ Proc. of

14th AsiaPacific Software Engineering

Conference (APSEC 07), Dec. 2007, pp. 41-

48. IEEE Press.

[10] C. C. Michael, G. E. McGraw, M. A.

Schatz, ―Generating software test data by

evolution,‖ IEEE Transactions on Software

Engineering, vol.27, no.12, pp. 1085-1110,

2001.

[11] J. Wegener, A. Baresel, H. Sthamer,

―Evolutionary test environment for automatic

structural testing,‖ Journal of Information

and Software

Technology, vol. 43, pp. 841-854, 2001.

[12] L. Bottaci, ―A genetic algorithm fitness

function for mutation testing,‖

Seminal: Software Engineering Using

Metaheuristic Innovative Algorithms, 2001.

[13] M. R. Girgis, ―Automatic test data

generation for data flow testing using a genetic

algorithm,‖ Journal of Universal computer

Science, vol. 11, no. 5, pp. 898-915, 2005.

[14] M. Dorigo, V. Maniezzo, and A. Colorni,

―Ant System: Optimization by a Colony of

Cooperating Agents,‖ IEEE Transactions on

Systems, Man, and Cybernetics-Part B

Cybernetics, vol. 26, no. 1, pp. 29-41, 1996.

[15] C. Blum, ―Ant colony optimization:

introduction and hybridizations Proc. of 7th

International Conference on Hybrid

Intelligent Systems (HIS‘07), Sept. 2007, pp.

24-29. IEEE Press.

[16] X. Zhang, H. Meng, and L. Jiao,

―Intelligent particle swarm optimization in

multiobjective optimization, Proc. of the

2005 IEEE Congress on Evolutionary

Computation, Vo. 1, pp. 714-719. IEEE Press.

[17] D.T. Pham, A. Ghanbarzadeh, E. Koç, S.

Otri, S. Rahim, and M. Zaidi ―The bees

algorithm – A novel tool for complex

optimisation problems Proc. of Innovative

Production Machines and Systems

Conference (IPROMS‘06), 2006, pp.454-461

[18] A. Bouchachia, ―An immune genetic

algorithm for software test data

generation‖ Proc. of 7th International

Conference on Hybrid Intelligent

Systems (HIS‘07), Sept. 2007, pp. 84-89. IEEE

Press.

[19] Doerner, K., Gutjahr, W. J., ―Extracting

Test Sequences from a Markov Software Usage

Model by ACO, LNCS, Vol. 2724, pp.

2465-2476,Springer Verlag, 2003.

[20] McMinn, P., Holcombe, M., ―The

State Problem for Evolutionary Testing, Proc.

GECCO 2003, LNCS Vol. 2724, pp. 2488-

2500,Springer Verlag, 2003

