
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 70

 Hadoop Fair Sojourn Protocol Based Job Scheduling On Hadoop

Mr. Dileep Kumar J. S.

1
Mr. Madhusudhan Reddy G. R.

2

 1
Department of Computer Science, M.S. Engineering College, Bangalore, Karnataka

2
Assistant professor, Department of Computer Science, M.S. Engineering College

Bangalore, Karnataka

ABSTRACT: We present Hadoop Fair Scheduler

Protocol, a scheduler introducing this technique to a real,

multi-server, complex and widely used system such as

Hadoop. The scheduling discipline is based on the

concepts of virtual time and job aging. These techniques

are conceived to operate in a multi server system with

tolerance to failures, scale-out upgrades, and multi-phase

jobs a peculiarity of Map Reduce. The results indicate

that size-based scheduling is a realistic option for Hadoop

clusters, because HFSP sustains even rough

approximations of job sizes. Which are based on realistic

workloads generated via a standard benchmarking suite,

pinpoint at a significant decrease in system response

times with respect to the widely used Hadoop Fair

scheduler, without impacting the fairness of the

scheduler, and show that HFSP is largely tolerant to job

size estimation errors.

Keywords: Map Reduce, Performance, Data

Analysis, Scheduling.

1. INTRODUCTION

 Map Reduce has become a popular model

for data-intensive computation in recent years. By

breaking down each job in to small map and reduce

tasks and executing them in parallel across a large

number of machines, Map Reduce can significantly

reduce the running time of data-intensive jobs.

However, despite recent efforts toward designing

resource-efficient map reduces schedulers, existing

solutions that focus on scheduling at the task-level

still offer sub-optimal job performance. The is

because task can have highly varying resource

requirements during their lifetime, which makes it

difficult for task-level schedulers to effectively utilize

available resources to reduce job execution time. The

advent of large-scale data analytic, fostered by

parallel frameworks such as Hadoop, Spark, and

Naiad, has created the need to manage the resources

of compute cluster operating in a shared, multi-tenant

environment. Within the same company, many users

share the same cluster because this avoids

redundancy in physical deployments and in data

storage, and may represent enormous cost savings.

Initially designed for few very large batch processing

jobs, data-intensive scalable computing frameworks

such as map reduce are nowadays used by many

companies for production, recurrent and even

experimental data analysis jobs. The heterogeneity is

substantiated by recent studies that analyze a variety

of production-level workloads. An important fact that

emerges from previous works is that there exists a

stringent need for short system response times. Many

operations, such as data exploration, preliminary

analyses, and algorithm tuning, often involve

interactivity, in the sense that there is a human in the

loop seeking answers with a trial-and-error process.

In addition, workflows schedulers such as Oozie

contribute to workload heterogeneity by generating a

number of small “orchestration” jobs. At the same

time, there are many batch jobs working on big

datasets: such jobs are a fundamental part of the

workloads, since they transform data in to value

transform data in to value. Due to the heterogeneity

of the workload, it is very important to find the right

trade-off in assigning the resources to interactive and

batch jobs.

The solution implements a size-based, preemptive

scheduling discipline. The scheduler allocates cluster

resources such that job size information which is not

available a prior is inferred while the job makes

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 71

progress toward its completion, scheduling decisions

use the concept of virtual time, in which jobs make

progress according to an aging function cluster

resources are “focused” on jobs according to their

priority, computed through aging. This ensures that

neither small nor large jobs suffer from starvation.

The outcome of our work materializes as a full-

fledged scheduler implementation that integrates

seamlessly in Hadoop: we called our scheduler

HFSP, to acknowledge an influential work in the

size-based scheduling literature.

2. Literature Survey

It shows existing system and how to overcome the

existing system explanation of proposed system and

its components.

An important fact that emerges is that there

exists a stringent need for short system response

times. Many operations, such as data exploration,

preliminary analyses, and algorithm tuning, often

involve interactivity, in the sense that there is a

human in the loop seeking answers with a trial-and-

error process. In addition, workflow schedulers such

as Oozier [1] contribute to workload heterogeneity by

generating a number of small “orchestration” jobs. At

the same time there are many batch jobs working a

big datasets: such jobs are a fundamental part of the

workloads, since they transform data into value. Due

to the heterogeneity of the workloads, it is very

important to find the right trade-off in assigning the

resources to interactive and batch jobs.

There are mainly two different strategies

used to schedule jobs in a cluster. The first strategy is

to split the cluster resources equally among all the

running jobs. A remarkable example of this strategy

is the Hadoop Fair Scheduler [2], [3]. While this

strategy preserves fairness among jobs, when the

system is overloaded, it may increase the response

times of the jobs. The second strategy is to serve one

job at a time, thus avoiding the resource splitting. An

example of this strategy is First-In-First-Out(FIFO),

in which the job that arrived first is served first.

 The problem with this strategy is that. Being

blind to job size, the scheduling choices lead

inevitably to poor performance: small jobs may find

large jobs in the queue, thus they may incur in

response times that are disproportionate to their size.

As a consequence, the interactivity is difficult to

obtain. Both strategies have drawbacks that prevent

them from being used directly in production without

precautions. Commonly, a manual configuration of

the both the scheduler and the system parameters is

required to overcome such drawbacks. This involves

the manual setup of a number of “pools” to divide the

resources to different job categories, and the fine-

tuning of the parameters governing the resources

allocation. This process is tedious, error prone, and

cannot adapt easily to changes in the workload

composition and cluster configuration. In addition, it

is often the case for clusters to be over-dimensioned ,

this simplifies resource allocation (with abundance,

managing resources is less critical), but has the

downside of costly deployments and maintenance for

resources for resources that are often left unused [4].

 We present the design of a new scheduling

protocol that caters both to a fair and efficient

utilization of cluster resources, while striving to

achieve short response time. Our approach satisfies

both the interactivity requirements of small jobs and

the performance requirements of large jobs, which

can thus coexist in a cluster without requiring manual

setups and complex tuning: our technique

automatically adapts to resources and workload

dynamics. Our solution implements a size-based,

preemptive scheduling discipline. The scheduler

allocates cluster resources such that job size

information – which is not available a priori is

inferred while the job makes progress towards its

completion. Scheduling decisions use the concept of

virtual time, in which jobs make progress according

to an aging function: cluster resources are “focused”

on jobs according to their priority, computed through

aging. This ensure that neither small nor large jobs

suffer from starvation. The outcome of the work

materializes a full-fledge scheduler implementation

that seamlessly in Hadoop [5]

3. Traditional Scheduling

Traditional Scheduling processor Sharing

(PS) and First Come First Serve (FCFS) are arguably

the two most simple and ubiquities scheduling

disciplines in use in many system for instance, Fair

and FIFO are two schedulers for Hadoop, the first

inspired by FCFS, and the second by process

scheduling. In FCFS, jobs are scheduled in the order

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 72

of their submission, while in PS resources are divided

equally so that each active job keeps progressing. In

loaded system, these disciplines have server

shortcomings in FCFS, large running jobs can delay

significantly small ones in PS, each additional job

delays the completion of all the others. In order to

improve the performance of the system in terms of

delay, it is important to consider the size of the jobs.

Size-based scheduling adopts the idea of giving

priority to small jobs as such they will not be slowed

down by large ones. The Shortest Remaining

Processing Time (SRPT) policy, which prioritizes

jobs that need the least amount of work to complete,

is the one that minimizes the mean response time (or

sojourn time), that is the time that passes between a

job submission and its completion [6] the below

figure provides an example that compares PS to

SRPT in this case two small jobs –j2 and j3- are

submitted while a large job j1 is running. While in PS

in three jobs run (slowly) in parallel in a size-based

discipline j1 is preempted.

Figure 1.Comparison between PS and SRPT

The result is that j2 and j3 complete earlier. Like

most size-based scheduling techniques, SRPT

temporarily suspends the progress of lower-priority

jobs fortunately, this is not a problem in a batch

system like Hadoop, for which results are usable only

after the jobs is completed. While policies like SRPT

improve means response time, they may incur in

starvation if small jobs are continuously submitted,

large ones may never receive service[7],[8] this

results in job mistreatment. To avoid starvation, a

common solution is to perform job aging. With job

aging, the system decrease virtually the size of jobs

waiting in the queue, and keeps them sorted

according to their virtual size, serving the one with

the current smaller virtual size. Job size is perfectly

known a priori, the FSP discipline exploits aging to

provide a strong dominance fairness guarantee no job

completes in FSP later than it would in PS.FSP also

guarantees excellent results in terms of both job

response time and fairness when job sizes are not

know exactly for these reason, the design of HFSP is

guided by the abstract ideas beyond FSP.

4. Hadoop Fair Sojourn Protocol (HFSP)

The Hadoop Fair Sojourn Protocol (HFSP)

is a size-based scheduler with aging for Hadoop.

Implementing HFSP raises a number of challenges a

few come from Map Reduce itself. Example the fact

that a job is composed by tasks while others come

from the size based nature of the scheduler in a

context where the size of the jobs is not known a

priori.

Jobs: In Map Reduce jobs are scheduled at the

granularity of tasks and they consist of two separate

phases called MAP and REDUCE. We evaluate job

sizes by running a subset of sample tasks for each

job, however, reduce tasks can only be launched only

after the Map phase is complete. The scheduler thus

splits logically the job in the two phases and treats

them independently therefore the scheduler consider

the job as composed by two parts with different sizes,

one for the MAP and the other REDUCE phase.

When a resource is available for scheduling a MAP

(resp. REDUCE) task, the scheduler sorts jobs based

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 73

on their virtual Map (resp. REDUCE) sizes, and

grants the resource to the job with the smallest size

for that phase.

Estimated and virtual size: The size of each phase

to which we will refer as real size, ia unknown until

the phase itself is complete. The scheduler therefore

works using an estimated size starting from this

estimate the scheduler applies job aging I.e., it

computes the virtual size, based on the time spent by

the job in the waiting queue. The estimated and the

virtual sizes are calculated by two different modules

the estimation module, that outputs the estimated size

and the aging module that takes in input the estimated

size and applies an aging function.

5. Modules in phase

1. The Estimation Module

2. The Aging Module

3. The Scheduling Policy

The Estimation Module: The role of the estimation

module is to assign a size to a job phase such that,

given two jobs, the scheduler can discriminate the

smallest one for that phase. When a new job is

submitted, the module assigns for each phase an

initial size Si. Which is based on the number of its

tasks .The initial size is necessary to quickly infer job

priorities. A more accurate estimate is done

immediately after the job submission, through a

training stage in such a stage a subset of task called

the training tasks is executed and their execution time

is used to update Si to a final estimated size Sf.

Choosing t induces the following trade-off a small

value reduces the time spent in the training stage at

the expense of inaccurate estimates a large value

increases the estimation accuracy but result in a

longer training stage. The scheduler is designed to

work with rough estimates therefore a small t is

sufficient for obtaining good performance.

The Aging Module: The aging module takes as input

the estimated sizes to compute virtual sizes. The use

of virtual size is a technique applied in many

practical implementations of well-known schedulers

it consists in keeping track of the amount of the

remaining work for each job phase in a virtual “fair”

system and update it every time the scheduler is

called. The result is that even if the job doesn’t

receive resources and thus its real size does not

decrease, in the virtual system the job virtual size

slowly decreases with time.

Job aging avoids starvation, achieves fairness, and

requires minimal computational load, since the

virtual size does not incur in costly updates.

The Scheduling Policy: In this section we describe

how the estimation and the aging modules coexist to

create a Hadoop scheduler that strives to be both

efficient and fair.

DEV: This workload is indicative of a

“development” environment, where by users rapidly

submit several small jobs to build their data analysis

tasks, together with jobs that operate on larger

datasets. This workload is inspired is inspired by the

Facebook 2009 trace observed by Chen et al, the

mean interval between job arrivals is µ = 30 s.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 4; Issue: 3; March -2015

 www.ijcrd.com Page 74

Test: This workload represents a “test” environment,

whereby users evaluate and test their data analysis

tasks on a rather uniform range of dataset sizes, with

20% of the jobs a large dataset. The mean interval

between jobs is µ = 60 s.

PROD: This workload is representative of a

“production” environment, whereby data analysis

tasks operate pre-dominantly on large datasets. The

mean interval between jobs is µ = 60 s.

6. Conclusion: The work was motivated by the

increasing demand for system responsiveness, driven

by both interactive data analysis tasks and long-

running batch processing jobs, as well as for a fair

and efficient allocation of system resources. We

presented an novel approach to the resource

allocation problem, based on the idea of size-based

scheduling. The effort materialized in a full fledged

scheduler that we called HFSP, the Hadoop Fair

Sojourn Protocol, which implements a size-based

discipline that satisfies simultaneously system

responsiveness and fairness requirements. The work

raised may challenges evaluating job sizes online

without wasting resources avoiding job starvation for

both small and large jobs, and guaranteeing short

response times despite estimation errors were the

most noteworthy.

Our Feature work is related to job preemption. We

are currently investigation a novel technique to fill

the gap between killing running tasks and waiting for

tasks to finish. Indeed killing a task too late is a huge

waste of work, and waiting for a task to complete

when it just started is detrimental as well. Our next

goal is thus to provide a new set of primitives to

suspend and resume tasks to achieve better

preemption.

References

 [1] Apache, “Oozie Workflow Scheduler,”

http://oozie.apache.org/.

 [2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J.

Ma, M. McCauley, M. J. Franklin, S. Shenker, and I.

Stoica, “Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster

computing,” in Pro- ceedings of the 9th USENIX

Conference on Networked Systems Design and

Implementation, 2012, pp. 2–2.

[3] Apache, “The Hadoop fair scheduler,”

http://hadoop.apache.org/doc/r1.2.1/fair_scheduler.ht

ml.

[4] Y. Chen, S. Alspaugh, and R. Katz, “Interactive

query processing in big data systems: A cross-

industry study of MapReduce workloads,” in Proc. of

VLDB, 2012.

[5] E. Friedman and S. Henderson, “Fairness and

efficiency in web server protocols,” in proc. Of ACM

SIGMETRICS, 2003.

[6] L.E. scharge and L. W. Miller, “The queue m/g/l

with shorestest remaining processing time

discipline,”

[7] stalling,operating system. Prentice hall, 1995.

[8] Microsoft, “The naiad system,”

https://github.com/. MicrosoftResearchSVC/naiad.

[9] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,

P. Barham, and M. Abadi, “Naiad: A timely dataflow

system,” in Proceedings of the 24th ACM

Symposium on Operating Systems Principles, 2013,

pp. 439– 455.

[10] [7] K. Ren et al., “Hadoop’s adolescence: An

analysis of Hadoop usage in scientific workloads,” in

Proc. of VLDB, 2013.

[11] G. Ananthanarayanan, A. Ghodsi, S. Shenker,

and I. Stoica, “Effective straggler mitigation: Attack

of the clones.” in NSDI, vol. 13, 2013

