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Abstract-There is a growing need for ad-hoc 

analysis of extremely large data sets, especially 

at internet companies where innovation critically 

depends on being able to analyze terabytes of 

data collected every day. Parallel database 

products, over a solution, but are usually 

prohibitively expensive at this scale. Besides, 

many of the people who analyze this data are 

entrenched procedural programmers. The 

success of the more procedural map-reduce 

programming model, and its associated scalable 

implementations on commodity hardware, is 

evidence of the above. However, the map-reduce 

paradigm is too low-level and rigid, and leads to 

a great deal of custom user code that is hard to 

maintain, and reuse. The map reduce is an 

effective tool for parallel data processing.  One 

significant issue in practical map reduce 

application is the data skew. The imbalance of 

the amount of the data assigned to each tasks to 

take much longer to finish than the others. 
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    1 INTRODUCTION  

Hadoop is an open source framework 

written in java that allows distributed processing of 

large datasets across clusters of computers using 

simple programming models. A Hadoop frame-

worked application works in an environment that 

provides distributed storage and computation across 

clusters of computers. Hadoop is designed to scale 

up from single server to thousands of machines, 

each offering local computation and storage. Map 

reduce is an important programming model for 

large-scale data-parallel applications such as web 

indexing, data mining, and scientific simulation. 

Hadoop is an open source implementation of Map 

Reduce enjoying wide adoption and is often used 

for short jobs. The completion of the job in the 

Hadoop depends on the slowest running task in the 

job. If  one task is significantly running task in the 

job. If one  task is significantly longer to finish than 

others. It can delay the progress of entire jobs. The 

straggler can be happen from various region like 

among which data skew is important one. The data 

skew refers to the imbalance the amount of work 

required to process such data. Hadoop’s 

performance is closely tied to its task scheduler, 

which implicitly assumes that cluster nodes are 
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homogeneous and tasks make progress linearly, and 

uses these assumptions to decide when to 

speculatively re-execute tasks that appear to be 

stragglers[2]. 

 

 

1.1The main objective of this paper summarized 

as follows. 

 Implement the method for general user 

defined Map reduce programs. The 

method has better approximation to the 

distribution of the intermediate data. 

 The LIBRA can adjust the work load 

allocation and deliver improved 

performance even in the absence of data 

skew when the performance underlying 

computing platform. 

 Implement the innovative approach to 

balance the load among the reduce tasks 

which supports the split of large key 

when application semantics permit. 

 Implement the LIBRA in the Hadoop 

and evaluate the performance for the 

some popular applications. 

 The LIBRA performance is higher than 

the other. The result will show that 

LIBRA can improve the job execution 

time to a factor 4. 

2 LITERATURE SURVEY 

Our implementation of Map Reduce runs on a 

large cluster of commodity machines and is highly 

scalable: a typical Map Reduce computation 

processes many terabytes of data on thousands of 

machines. Programmers find the system easy to 

use: hundreds of Map Reduce programs have been 

implemented and upwards of one thousand Map 

Reduce jobs are executed on Google's clusters 

every day[1]. The standard approach to handling 

skew in parallel systems is to assign an equal 

number of data values to each partition via hash 

partitioning or clever range partitioning. These 

strategies effectively handle data skew, which 

occurs when some nodes are assigned more data 

than others. Computation skew, more generally, 

results when some nodes take longer to process 

their input than other nodes and can occur even in 

the absence of data skew | the runtime of many 

scientific tasks depends on the data values 

themselves rather than simply the data size. These 

histograms were also shown earlier to be optimal 

for join selectivity estimation, thus establishing 

their universality. In this paper, presents a new 

strategy called LIBRA (Lightweight 

Implementation of Balanced Range Assignment) to 

solve the data skew problem for reduce-side 

applications in Map Reduce. Compared to the 

previous work, our contributions include the 

following: We propose a new sampling method for 

general user defined Map Reduce programs. The 
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method has a high degree of parallelism and very 

little overhead, which can achieve a much better 

approximation to the distribution of the 

intermediate data. We use an innovative approach 

to balance the load among the reduce tasks which 

supports the split of large keys when application 

semantics permit. Figure 1 shows that with our 

LIBRA method, each reducer processes roughly the 

same amount of data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: scenario of proposed system  

Data skew mitigation in LIBRA consists of 

the following steps: 

 Small percentage of the original map tasks 

are selected as the sample tasks. They are 

issued first whenever the system has free 

slots. Other ordinary map tasks are issued 

only when there is no pending sample task 

to issue.  

 Sample tasks collect statistics on the 

intermediate data during normal map 

processing and transmit a digest of that 

information to the master after they 

complete.  

 The master collects all the sample 

information to derive an estimate of the 

data distribution, makes the partition 

decision and notifies the worker nodes. 

 Upon receipt of the partition decision, the 

worker nodes need to partition the 

intermediate data generated by the sample 

tasks and already issued ordinary map tasks 

accordingly. Subsequently issued map tasks 

can partition the intermediate data directly 

without any extra overhead. 

Reduce tasks can be issued as soon as the 

partition decision is ready. They do not 

need to wait for all map tasks to finish. 

In a Map Reduce system, a typical job execution 

consists of the following steps: 1) After the job is 

submitted to the Map Reduce system, the input files 

are divided into multiple parts and assigned to a 

group of map tasks for parallel processing. 2) Each 

map task transforms its input (K1, V1) tuples into 

intermediate (K2, V2) tuples according to some 
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user defined map and combine functions, and 

outputs them to the local disk. 3) Each reduce task 

copies its input pieces from all map tasks, sorts 

them into a single stream by a multi-way merge, 

and generates the final (K3, V3) results according 

to some user defined reduce function. 

2.1 Algorithm: 

In this section the sampling and partitioning 

algorithm in LIBRA as shown below. Our goal is to 

balance the load across reduce tasks. 

 The algorithm consists of three steps: 

1) Sample partial map tasks 

2) Estimate intermediate data distribution 

3) Apply range partition 

In the following, we will describe the details of 

these steps. 

Problem Statement 

We first give a formulation of the intermediate data 

between the map and the reduce phases can be 

represented as a set of tuples: (K1,C1), 

(K2,C2),….,(Kn,Cn), where Ki represents a distinct 

key in the map output, and Ci represents the number 

of tuples in the cluster of Ki. Without loss of 

generality, we assume that Ki < Ki+1 in the above 

list. Then our goal is to come up with a range 

partition on keys which minimizes the load of the 

largest reduce task. Let r be the number of reduce 

tasks. The range partition can be expressed as: 0 = 

pt0 < pt1 < … < ptr = n with reduce task i taking 

responsibility of keys in the range of 

. Following the cost model 

proposed by previous work [3], [4],[5] we define 

the function Cost(Ci) as the computational 

complexity of processing the cluster Ki in reduce 

tasks which must be specified by the users. For 

example, the cost function of the sort application 

can be estimated as Cost(Ci) = Ci (for each cluster 

Ki, reducers only need to output Ci tuples directly). 

For reduce side self-join application, the cost 

function should be ci
2
 since reducers need to output 

Ci tuples for each tuple in cluster Ki. By specifying 

the exact cost function, we can balance the 

execution time of each reducer one step further. 

Then the objective function can be expressed as 

follows:  

 Since the number of unique keys can be large, 

calculating the optimal solution to the above 

problem is unrealistic. Therefore, we present a 

distributed approximation algorithm by sampling 

and estimation. 

Sampling Strategy 

 

After a specific map task j is chosen for 

sampling, its normal execution will be plugged in 

with a lightweight sampling procedure. Along with 

the map execution, this procedure collects a statistic 

of (K
j
i ,C

j
i ) for each key K

j
i in the output of this 

task, where C
j
i is the frequency (i.e., the number of 

records) of key K
j
i . Since the number of such (K

j
i 

;C
j
i ) tuples can be on the same order of magnitude 
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as the input data size, we keep only a sample set 

Ssample containing the following two parts: 

_ Slargest: p tuples with the largest C
j
i 

_ Snormal: q tuples randomly selected from the rest 

according to uniform distribution (excluding tuples 

in Slargest) 

This sampling task then transmits the following 

statistics to the master: the sample set Ssample = 

Slargest U Snormal, the total number of records (TRj ) 

and the total number of distinct clusters (TCj ) 

generated by this task. The size of the sample set p 

+ q is constrained by the amount of memory and the 

network bandwidth at the master. The larger p + q 

is, the more accurate approximation to the real data 

distribution we will achieve. In practice, we find 

that a small p+q value has already reached a good 

approximation and brings negligible overhead. 

 

Estimate Intermediate Data Distribution 

After the completion of all sample map 

tasks, the master aggregates the sampling 

information in the above step to estimate the 

distribution of the data. It first combines all the 

sample tuples with the same key into one tuple 

(Ki,Ci) by adding up their frequency It then sorts 

these combined tuples to generate an aggregated list 

L. Suppose there are m maps for sampling and 

S
j
sample

 
is the sample set of map j. Then the 

aggregated list L is: 

 

To calculate the total number of records TR, we 

simply sum up the record counts in all sample map 

tasks. However, calculating the total number of 

distinct clusters TC is hard because clusters 

processed by different map tasks may share the 

same key and hence should not be counted twice. 

For example, assume that there are two sample map 

tasks and their sample sets are: {(A; 10), (B; 5), (C; 

3), (D; 2), (E; 2)}, {(A; 20), (B; 3), (D; 1), (F; 1), 

(H; 1)}, in which p = 2 and q = 3. By summing up 

the frequencies of the same key, the merged sample 

set Ssample is {(A; 30), (B; 8), (C; 3), (D; 3), (E; 2), 

(F; 1), (H; 1)}.  

 

Range Partition 

We adopt the above approximation to the 

data distribution to get an approximate solution to 

the range partition. We need to generate a list of 

partition points in the aggregated list L where

and minimize: 

 

We use dynamic programming to solve this 

optimization problem: let F(i; j) represent the 

minimum value of the largest partition sum of 

cutting the first i items into j partitions, 

and  
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Then the recursive formulation of F(i; j) is: 

 

 The partition decision can be derived from 

optimized decision of F(i; j). 

 

3. PERFORMANCE EVALUATION 

   A LIBRA program can be run on Grep 

application and analyzed the split of data for 

various partitions, also checked the job execution 

time. The histogram and the time for all the 

partitions are shown below: 

 

 

 

 

4. RESULTS 

Our research work on this paper signify the 

program for the different partitioner, and found that 

the new sampling strategy improves the 

performance significantly, where the data gets 

evenly distributed across all the reducers, thereby 

reducing the data skew. Also, the job execution 

times gets improved significantly.  

CONCLUSION 

The Map Reduce programming model has 

been successfully used at Google for many different 

purposes. We attribute this success to several 

reasons. First, the model is easy to use, even for 

programmers without experience with parallel and 

distributed systems, since it hides the details of 

parallelization, fault-tolerance, locality 

optimization, and load balancing. Second, a large 

variety of problems are easily expressible as Map 

Reduce computations. Data skew mitigation is 

important in improving Map Reduce performance. 

This paper has presented LIBRA, a system that 

implements a set of innovative skew mitigation 
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strategies in an existing Map Reduce system. One 

unique feature of LIBRA is its support of large 

cluster split and its adjustment for heterogeneous 

environments. In some sense, we can handle not 

only the data skew, but also the reducer skew. 
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