International Journal of Combined Research & Degwelent (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 4; Issygudie -2015

Requirement Analysisfor clustering Application Serversusing Data
Mining Techniques

R.J. Anandhi !, Seema Patil 2, Shobha T 2

! Professor & HOD??® Research Scholar
123 Department of CSE ,The Oxford College of EngiimegrBangalore - 560068

Abstract— In this paper, we discuss the design,
implementation, and experimental evaluation of a
middleware architecture for enabling Service Level
Agreement (SLA)-driven clustering of QoS-aware
application servers. Our middleware architecturgpsuts
application server technologies with dynamic reseur
management: Application servers can dynamicallyngha
the amount of clustered resources assigned to doste
applications on-demand so as to meet applicatiosl-le
Quality of Service (QoS) requirements. These regoémts
can include timeliness, availability, and high tigbput and
are specified in SLAs. A prototype of our architeet has
been implemented using the open-source J2EE applica
server JBoss. The evaluation of this prototype shitnat our
approach makes possible JBoss’ resource usageizgion
and allows JBoss to effectively meet the QoS reguémts of
the applications it hosts, i.e., to honor the Sldfsthose
applications.

Index Terms— Service Level Agreement, Quality of Service,
QoS-aware application server, QoS-aware clustenamhc
cluster configuration, monitoring, load balancing

I. INTRODUCTION

Distributed enterprise applications (e.g., stocladimng,
business-to-business applications) can

be developed to be run with application server rietdgies
such as Java 2 Enterprise Edition (J2EE) serveDRREEA
Component Model (CCM) servers, or .NET. These
technologies can provide the applications they ot an
execution environment that shields those applinatifyom
the possible heterogeneity of the supporting comguand
communication infrastructure; in addition, this Eomment
allows hosted applications to openly access eriserpr
information systems, such as legacy databases.

These applications may exhibit strict Quality ofh\Bee
(QoS) requirements, such as timeliness, scalabditg high
availability that can be specified in so-called &= Level
Agreements (SLAs). SLAs are legally binding contsatbat
state the QoS guarantees an execution environnantcd
supply its hosted applications.

Current application server technology offers clistg
and load balancing support that allows the apptioat
designer to handle scalabilty and high availapilit
application requirements at the application levewever,
this technology is not fully tailored to honor pibds SLAs.

In order to overcome this limitation, we have depeld a
middleware architecture that can be integrated m a
application server to allow it to honor the SLAs thie
applications it hosts—in other words, to make iSaware.

www.ijcrd.com

The designed architecture supports dynamic clugteaf
QoS-aware Application Servers (QaASs) and loadnicaig.

In current J2EE servers, the clustering suppaptasided in
the form of a service. In general, that serviceuireg the
initial cluster configuration to consist of a fixeset of
application server instances. In the case of pezdd |
conditions or failures, this set of instances carchanged at
runtime by a human operator reconfiguring the elusts
necessary (e.g., by introducing new server instrmreby
replacing failed instances). In addition, currefistering
support does not include mechanisms to guarantaé th
application-level QoS requirements are met. These
limitations can impede the efficient use of applma server
technologies in a utility computing context. In facurrent
clustering design requires overprovision policiesbé used

in order to cope with variable and unpredictabladiand
prevent QoS requirements violations.

Our middleware architecture is principally respbfesi
for the dynamic configuration, runtime monitoriremd load
balancing of a QoS-aware cluster. It operates pranestly to
the hosted applications (hence, no modificationsthiese
applications are required) and consists of thefdtg three
main services: Configuration Service, Monitoringnéee,
and Load Balancing Service.

1.1 MIDDLEWARE PLATFORM

A middleware platform is generally used as an
architectural component for supporting the develepnand
the execution of distributed applications. Its medte is to
create a level of abstraction so as (i) to presenmified
programming model to application developers anyl t6i
mask out problems of system and network heterogenei
Middleware can be composed by multiple layers. &hmm
be identified four principal levels
¢ Hogt Infrastructure Middleware it encapsulates and
enhances native operating system communication and
concurrency mechanisms to create portable and blusa
network programming components;
« Digtribution Middleware it defines higher-level distributed
programming models whose reusable APIs and meahanis
automate the native operating system network prograg
capabilities encapsulated by the previous level
e Common Middleware Services the collection of the
services of this level are responsible for augmentihe
distribution middleware layer by defining highewd
domain-independent components that allow the agiic
designers to concentrate on the application logig;o
« Domain-specific Middleware Services these services are
tailored to the requirements of a specific appl@atiomain
and embody knowledge of that domain.

Page 673

International Journal of Combined Research & Dgwelent (IJCRD)
elSSN:2321225X;pISSN:232-2241 Volume: 4; Issud; June -2015

——
Middleware Level QoS
Operating

System and

o s

Level I

Figure 1. Levelsof QoS Integration

Nowadays the middleware technology is larc
adopted, in order to make easier the developmer
distributed applications; however, it is importahiat the
middleware remains effective for such types of mppbns
(e.g., enterprise applications) that can impose atei® in
terms of resource availability, adaptivity, reliéi
scalability, and timeliness. In fact, these appime must
operate under changeable environment conditionstiaeg
present stringent Qliy of Service (QoS) requirements tt
are to be met in order to guarantee the correa\behof the
applications themselves.

Figure 1 depicts the levels of the software infragttire
in which a QoS management system should be prov
Thus, forexample, at the operating system level, there sk
be mechanisms for reserving such resources as @Ekpry
and threads; the communication level should pro
applications with mechanisms for network monitoriagd
reservation; the middleware level siitb be constructed o
of services for QoS negotiation, monitor an adémiaand
finally QoS monitoring and adaptation can be appbé the
application level as well, by allowing this level monitor
and adapt the QoS it may require.

2 SERVICE LEVEL AGREEMENTS

In current industrial practice, QoS requirements gpecifiec
in so-called SLAs.

Our SLA represents a collection of contractual sés
binding a QoSaware cluster to the applications it hosts.
term this SLA a hosting SLA. This is an XML e that
consists of two principal sections: Client Respbitiies and
Server Responsibilities. These define the rightsd
obligations of the application clients and the &ation
server, respectively. Both the Client and Se
Responsibilities may spéy different levels of QoS, eac
related to some (or all) operations of the hosteglieation.
Hence, a client obligation could specify the maximr
number of requests clients are allowed to send h®
application, within a defined time interv

The DPllowing SLA fragment shows the requestRi
which serves to capture this specific client olllya The
fragment is part of a larger hosting SLA example &
conventional bookshop application. It provides roiewith
operations such as ‘“login,” *“catg,” “bookDetails,”
“addToCart,” and so on.

<ContainerServiceUsage name="HighProri
RequestRate="100/s
<Operations>
<Operation path="catalog.jsp” />
<Operation path="AddToCart" />
<Operation path="checkout.jsp” />
<Operation path="CheckoutCtl" />
</Operations>

www.ijcrd.com

</ContainerServiceUsage>e allows a J2EE clustezact tc

Server obligations may include service availability
guarantees. The fragment of the hosting SLA beloows
possilte availability guarantees for customers of a tg|
bookshop application.
<ServerResponsibilities
serviceAvailability="0.99
efficiency="0.95’

efficiencyValidity="2">

<OperationPerformance name="HighPrior
maxResponseTime="1.0s

<Operations>
<Operation path="catalog.jsp”
<Operation path="AddToCart"
<Operation path="checkout.jsp”
<Operation path="CheckoutCtl"
</Operations>
</OperationPerformance>

</ServerResponsibilities>

The serviceAvailability attribute specifies t
probability with which the hosted application mulsé
available over a predefined time period. In additieact
application operation specified as part of the SBérver
Responsibilities can be lassified according to & @tribute
In the example abovewe opted for the response tir
attribute maxResponseTime, as it is used in masnwercial
SLAs (e.g., [1], [49], [33]) as an effective parderefor
measuring service responsiveness. Finally, as gmbiatit in
[9], the SLA may also specify the percent of SLA
violations that can be tolerated, within a prededintime
interval, before the application service providesurs a (e.g.
economic) penalty.

3THE MIDDLEWARE ARCHITECTURE

We have identified the following three main issuesthe
design of our architecture:
1. Guaranteeing that the QoS requirements specifi€&iLAs
are met.
2. Optimizing the resource utilization in addressitegri 1,
above.
3. Maximizing the portability of the software architee
across a variety of specific J2EE implementat

To address these issues, we conducted -depth
assessment of the statetbéart in the design of
architectures developed to meet the QoS requiremef
distributed applications. This helped us to forreila
number of recommendations and principleat guided our
design. Therefore, for example, these recomments
include the need for a resource monitoring senticat
assesses the resource state at runtime; the defsitymamic
adaptation facilities was based on principles defifrom the
feedba& control theory [35]. In addition, as we are de@
with a clustered environment characterized by hightiable
and unpredictable load conditions, dynamic loacamehg
mechanisms may be necessary. These mechanisms el
to balance client requestsnong clustered servers, basec
the actual load of those servers, thus preventieyes
overloading.

In view of the above observations, we designe
middleware architecture incorporating three priatiQos-
aware middleware services: a ConfiguratiService, a
Monitoring Service, and a Load Balancing Sen

As already mentioned, this architecture is desigoeloe
deployed in a cluster of application servers. Thester
consists of application server instances (termetksp Eacl
node hosts a réipa of our services; our architect

implements a primarpackup replication scheme [11] 1
fault-tolerance purposes.

Page 674

International Journal of Combined Research & Dgwelent (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 4; Issygude -2015

The principal responsibilities of the three sersice
mentioned above can be summarized as follows:
The Configuration Service is responsible for configuring
the QoS-aware cluster so it can meet the custoppication
hosting SLA. The main activities performed by the
Configuration Service include configuring the cérsat the
time the hosting SLA is deployed in the QoS-awduster
(at SLA deployment time) and possibly reconfiguritig
cluster at runtime.

The cluster configuration process consists of lngd
the initial cluster by forming a group of nodes rfroa
minimal set of available nodes to ensure the servic
availability requirement of the hosting SLA is met.

The runtime reconfiguration process consists of
dynamically resizing the cluster configuration, dyding or
removing clustered nodes, as needed. Adding noaleshe
necessary in order to handle a dynamically incnegatiad
and in case a clustered node fails and needsrepteced by
an operational one (or possibly more than one); thos
purpose, a pool of spare nodes is maintained.

Releasing nodes may be necessary to optimize the us
of the resources. If the load on a hosted apptinati
significantly decreases, some of the nodes alldctiethat
application can be dynamically deallocated anduitet! in
the pool of spare nodes for further usage.

The Monitoring Service is in charge of monitoring the QoS-
aware cluster at application runtime so as to degtessible 1)
variations in the cluster membership, 2) variationgluster
performance, and 3) violations of the hosting SLA.

Thus, the Monitoring Service periodically checks th
cluster membership configuration to detect whethestered
nodes should join or leave the cluster followingufes or
voluntary connections to (or disconnections frong tluster.

In addition, it monitors data such as cluster respotime,
client request rate, and cluster SLA violations detect
whether the cluster-delivered QoS deviates from twhka
required and specified in the hosting SLA. Spealfic this
service makes use of a collection of parameterspated
and updated at run time. These parameters allow he
Monitoring Service to keep track of the dynamic d&&br of
the cluster in order to check whether or not thestelr is
honoring the hosting SLA at runtime; they serven&intain

1) the cluster's operational conditions trend, 2) the
operational conditions trend of each clustered neael 3)
the cluster violation rate trend.

The Load Balancing Service is implemented at the
middleware level and balances the load of HTTPntlie
requests among the clustered nodes; it contriliate®eting
the hosting SLA by preventing the occurrence of enod
overload and avoiding the use of resources thae bacome
unavailable (e.g., failed) at runtime. The reasar f
implementing load balancing at the middleware leigl
twofold; namely, implementing load balancing atstievel
allows independence from any underlying operatiysjesn.

In addition, the designed Load Balancing Service easily
detect specific application server conditions, sashserver
response time and cluster membership configurafidre
Load Balancing Service we have developed can hegtitaf

as a reverse proxy server that essentially intéscefient
HTTP requests for an application and dispatchesethe
requests to the nodes hosting that applicatiorindludes
support for both request-based and session-basad lo
balancing. With request-based load balancing, each
individual client request is dispatched to any wwsd node
for processing; in contrast, with sessionbased bzdancing,
client requests belonging to a specific client sessare
dispatched to the same clustered node.

The Load Balancing Service is responsible for

International Journal of Combined Research and Dpweent

1.intercepting each HTTP client request,

2. selecting a target node that can serve that reg@yesting
specific load balancing policies,

3. deftly manipulating the client request to forwartbithe
selected target node,

4. receiving the reply from the selected target naahel,
finally,

5. providing a reply to the client who has triggerked t
request.

The load balancing policy embodied in our Service
(termed WorkLoad policy) is an adaptive policy,vas are
interested in dynamically balancing the load amologtered
nodes. This policy enables the Load Balancing $ervo
select a lightly loaded node among those in thetetuin
order to serve client requests.
3.1QoS-Aware Middlewar e Services I nteractions

Our QoS-aware middleware services cooperate witth ea
other to ensure hosting SLA enforcement and mangoiFig.
2 shows how they interact.

ents < Balafmmg

X Service

Cluster

Monitoring
Service ¢

Fig 2 QoS-Aware Middlewar e Services | nter actions

In Fig. 2, client requests are intercepted by thead.
Balancing Service. For each request, the QoS delivey the
cluster is compared to the desired level of Qo<ifipd in
the hosting SLA in order to monitor adherence is BLA.
To this end, the Configuration Service makes thetihg SLA
content available to the Monitoring Service. Therliflaring
Service cooperates with the Load Balancing Senadabtain
the QoS delivered by the cluster. Based on théevetd QoS
data, the Monitoring Service computes and updales
monitoring parameters (see Section 4), which strveheck
whether the cluster operational conditions are eclde
violating the hosting SLA. Hence, the Monitoringr8ee
first monitors the SLA Client Responsibilities dfet hosting
SLA. If clients send a higher number of requestmntithat
allowed, clients are violating the SLA. No correetiactions
are performed to reconfigure the cluster in thiecaather, an
application level exception is raised that may eatise
misbehaving clients to be put in a position notirtterfere
with the properly behaving ones. Second, the Moinio
Service monitors the Server Responsibilities of osting
SLA. If it detects that the cluster SLA violatioate trend is
close to breaching the hosting SLA, it invokes the
Configuration Service so as to reconfigure thetefusn this
case, the Configuration Service acts upon the eluby
adding new nodes up to a predefined limit. Thaitliis a
configuration parameter obtainable via either apgyion
benchmarking or application modeling. Its purposeta
identify an upper boundary above which adding nedes
does not introduce further significant performance
enhancements. This can be caused by factors such as
increased coordination costs for cluster managenaeiot
bottlenecks due to shared resources such as alcetrioad
balancing service or a centralized DBMS.

Note that the Configuration Service can augment the
cluster by introducing one new node at a time orentban
one in a single action. When adding one node iat&, &

—

www.ijcrd.com

Page 675

International Journal of Combined Research & Dgwelent (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 4; Issygude -2015

[29].

waiting time elapses between the Configuration Berv
reconfigurations following each node inclusion. §time
may be useful for handling the transient phase ofew
added node. The transient phase represents theelapsed
from the introduction of the new node in the cluatatil it
reaches a steady state enabling it to serve thetckquests.
On the other hand, adding more than one nodeiateadan
be useful to deal with possible flash crowd evehtsfact,
these events may not be fully resolved by addirsg gmne
node at the time to the cluster, owing to the above
mentioned transient phase.

If the Monitoring Service detects that the cluster
effectively responding to the injected client loétdnvokes
the Configuration Service to act upon the clustgr b
releasing clustered nodes, as they are no longesaary. In
configuring/reconfiguring the cluster, the Configtion
Service produces a resource plan object. This binjeltides
the IP address of each clustered node belongirigetduilt
cluster configuration. In essence, the resource gfeecifies
the resources to be used in order to construdtite-aware
cluster capable of meeting the input hosting SLA.

4A CASE STUDY:

APPLICATION SERVER
JBoss consists of a collection of middleware sewic

for communication, persistence, transactions, acdrity

[18]. These services interact by means of a microkernel

based on the Java Management eXtension (JMX)

specifications

THE ENHANCED JBOSS

Fig.3 shows how the QoS-aware cluster is
implemented with a number of clustered QaAS nodes.
This figure shows that every clustered node incates a
replica of the Configuration Service, Monitoring ridee,
and Load Balancing Service, each implemented and
integrated into the JBoss application server asvidean.
Only one node in the cluster is responsible for SLA
enforcement, monitoring, and load balancing. Wentéris
node the cluster Leader. The remaining nodes,calieve
nodes, are used as backup servers in case therlazaskes.

Possible Leader crash during configuration (or imet
reconfiguration) is detected by the Configurati@n&es in the
slave nodes through their (local) Monitoring Seegic
These Monitoring Services are alerted of the Leadeash
by the wunderlying group communication mechanism,
namely, JGroups [24], included in the standard 3§Bos
application server. JGroups [2] provides the chestenodes
with reliability properties that include losslessessage
transmission, message ordering, and atomicity. Assalt,
should Leader crash occur, the following simpleovecy
protocol is performed by the Configuration Seniitg#tances
deployed in the slave nodes. Every ConfiguratiorviSe is
identified by a unique identifier (ID) consisting the IP
address of the machine where the Configuration iSeig
deployed. In addition, all Configuration Serviceavld a
consistent cluster configuration state object; thlsthe
resource plan object mentioned earlier and conefséslist
of the IDs of the available clustered nodes. Wheader
crash is detected by the slave Monitoring ServitesJatter
inform their local Configuration Services that amnkeeader
must be elected. The Configuration Services exarttiee
IDs of the available nodes in the cluster configorastate
and elect the server with the minimum ID as the hewader.
Note that, owing to the JGroups reliability propest
mentioned earlier, all clustered nodes have a stargiview
of the current cluster membership; hence, they easily
apply the simple deterministic algorithm for Leaéé=ction
introduced above.

Fig 3 QOS awar e application server

The first election of the cluster Leader is trigegeiby
the hosting SLA deployment. In fact, the QaAS nodere
that deployment occurs becomes the Leader.
Configuration Service in the Leader node parsesirpat
hosting SLA to extract the QoS parameters that eytite
required cluster configuration (client requestRate,
serviceAvailability, efficiency); it then makes theavailable
to the Monitoring Service responsible for checkirlgster
performance. For this purpose, the Monitoring SErvis
constructed out of three components: SLA Violations
Monitor, Evaluation and Violation Detection Servicend
Cluster Performance Monitor.

In general, these components interact with eacér dth
implement a monitoring mechanism capable of dynalyic
adapting to modifications of both the client load
characterization and node operational conditioms.our
implementation, we assume that node performance
degradation can be due to the load imposed by s#eices
running on the nodes (nodes can concurrently hadtran
services other than QaAS).

The above-mentioned Monitoring components are
invoked when incoming client requests are intereg ity the
Load Balancing Service. These requests are inteddyy a
LoadBalancingFilter implemented using the ServidteF
technology [17]. The main responsibilities of themitoring
components can be summarized as follows: The SLA
Violations Monitor is responsible for verifying wiher or
not the SLA efficiency attribute is met within th8LA
efficiency validity period. When violations of theosting
SLA occur 4.14.1 Experimental Evaluation

The prototype described above has been used to
carry out a set of experiments aimed at assessintpel
overhead introduced by our middleware servicebénJBoss
application server, 2) the scalability propertieé aur
QoSaware cluster, and 3) the resource optimization
achievable in a QoS-aware cluster, while honorihg t
hosting SLA.

In a test of several Linux machines interconnettgd
dedicated 1 Gb Ethernet LAN. Each machine is a %68
Intel Xeon processor, equipped with 2 GB RAM. Ire th
experiments described below, one of these machises
dedicated to host the cluster Leader; the othethinas are
used to host either the QaAS slave nodes servimgltant
requests or the client program used to generafeiattload
in the cluster. In addition, a dual-processor maehis
dedicated to hosting the database used in the iengreal
evaluation, namely MySQL [34].

As for the client program, we implemented our own
program in order to 1) specify a variety of cliclod
distributions, 2) specify different client requestes, and 3)

The

simulate typical behavior of common browsers bybding
caching of the static contents of the HTTP clienfuests.

www.ijcrd.com

Page 676

Percentage of SLA

violations
w
®

International Journal of Combined Research & Dgwelent (IJCRD)
elSSN:2321225X;pISSN:232-2241 Volume: 4; Issud; June -2015

4.1.1 QaAS Over head Evaluation

First concern was to assess whether our middle
services were adding unnecessary overhead to theter
response time and throughput, in the absencelofdai For
this purpose, we instantiated the middleware sesvin the
cluster introduced earlier and used from one ugfotar
QaAS nodes. With these configurations, we ran tets sf
tests. In the fst set, we directly injected equally distribu
artificial client requests to each a vailable staddJBos:
node. In the second set of tests, we deployed tistingy
SLA, thereby enabling our services and directeddient
requests to the Load BalangiService

In both cases, the cluster provided the same thumut
and response time, showing that QaAS does notdinte
any significant overhead.

Note that introducing a reverse proxy impl
performance penalties; however, these are balabgete
HTTP protocol optimizations performed by the Lc
Balancing Service. Similar results can be obtaimgth
advanced HTTP reverse proxies such as Apache }
server with mod_jk [32].

To conclude this section, we measured the satar
point of the LoadBalancing Service. For this purpose,
used the immemory database [19] replicated in e
clustered
nodes and then through the Load Balancing Servitewe
were able to identify the maximum load above whilh
Load Balancing Service becomes a bneck. From this
test, we observed that the Load Balancing Servies
capable of supporting up to 450 requests per se
introducing no overhead. Note that this figure dejs
principally on the Web page size rather than theler of
nodes used in the cluster.

4.1.2 QaAS Scalability Evaluation

The second experiment was conducted to evaluate
scalability of the Qo%ware cluster we had developed.
this experiment, we varied the number of nodekéncluste!
starting by one node, scaling up to finodes. The obtained
results are shown in Table 1. It is clear thatabgmenting
the number of QaAS clustered nodes, QaAS does, snada
if not in an entirely linear fashion. In fact, asident in
Table 1, for two nodes, throughput is exactly de
compared to the value obtained with one node. Wited
and four nodes, throughput keeps on augmentinigowdi
not linearly. We identified the cause of this babain the
database, which becomes a bottleneck. Note thatdhd
Balancing Service couldot have caused these performa
anomalies, as throughput is below the 450 requpst:
second mentioned in the previous sec

Percentage of SLA violations
(95% SLA efficiency)

2

«
ER

2
B

——SLA Violation rate
=—=SLA limit

9 moN
® ¥ ¥

0:00:00
0:03:30
0:07:00
0:10:30
0:14:00
0:17:30
0:21:00
0:24:30

1 0:28:00
0:56:00
0:59:30

=]
3
o

0:31:30
0:35:00
0:38:30
0:42:00
0:45:30
0:49:00
0:52:30

Fig 5.SLA Violation

Conclusion
In our architecture, the size of the cluster caande a
runtime, in order to meet nonfunctional applical
requirements specified within what we have ter a hosting
SLA.
The experimental results we have presented ¢
the effectiveness of our approach; in particulagyt show
that the efficient use of resources and the stactstraint:

www.ijcrd.com

imposed by the SLA can be addressed by means afnaigi
reconfiguraibn mechanisms even in the case of ¢
complex systems as a cluster of J2EE applicatioress

We are investigating issues of dynamic reso
management when multiple applications are conctiyr
deployed in a J2EE server cluster; these applitathave
their own hosting SLAs and compete for the usenhefdame
clustered nodes.

REFERENCES
[1] “Service Level Agreement (SLA),” http://wwv
wilsonmar.com/ 1websvcs.htm, 20
[2] T. Abdellatif, E. Cecchet, and R. Lachaize, “Evéilraof
a Group CommunicatiotMiddleware for Clustered J2EE
Application
Servers,” Proc. Int'l Symp. Distributed Objects ¢
Applications (DOA '04), Oct. 200
[3] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
Kalantar, S. Krishnakumar, D.P. Pazel, J. Pershangl B.
Rockwerger, “Ocean8LA Based Management ¢
Computing Utility,” Proc. Seventh IFIP/IEEE 'InSymp.
Integrated Network Manageme
(IM) May 2001.
[4] M. Aron, P. Druschel, and W. Zwaenepoel, usi¢
Reserve: A Mechanism for Resource Management iat€-
Based Network,” Proc. ACM SIGMETRICS Confynd
2000.
[5] J. Balasubramanian, D.C. Schmidt, L. Dowdy, ar
Othman, “Evaluating the Performance of Middlew
Load Balancing Strategies,” Proc. Eighth Int'l IEl
Enterprise Distributed Object Comput Conf. (EDOC
'04), Sept. 2004.
[6] “WebLogic Clustering,” BEA Systemhttp://e-
docs.bea.conwls/docs81/clustel 2006.
[7] “BEA WebLogic Server 8.1 Overview: Tt
Foundation for Emrprise Application Infrastructure
BEA Systems,
Aug. 2003.
[8] S.Bouchenak, F. Boyer, E. Cecchet, S. Jea
Schmitt, and J.B. Stefani, “A Compon-Based
Approach to Distributed System Managen—A Use
Case with Self-
Manageable J2EE Clusters,” P 11th ACM SIGOPS
European Workshop, Sept. 20
[9] M.J. Buco, R.N. Chang, L.Z. Luan, C. Ward, <
Wolf, and P.S. Yu, “Utility Computing SL:
Management Based Upon Business Objectives,”
Systems J., 2004.
[10] ObjectWeb home page, ObjectWeb Consorti
http://www. objectweb.org2006
[11] G. Coulouris, J. Dollimore, and T. Kindbel
Distributed Systems -Soncepts and Design, fourth ¢
Addison-Wesley, 2005.
[12] M. Debusmann and A. Keller, “Sl-Driven
Management of Distributed SystelUsing the Common
Information Model,” Proc. Eighth Int'l IFIP/EEE Symp
Integrated Management (IM), Mar. 20
[13] “SPECjAppServer2004,”StandardPerforme
Evaluation Corp., http://www.spec.org/jAppServer2(
2006.
[14] B. Roehm et al., IBM WebSphelApplication
Server V6 Scalability and Performance Handb
Redbooks IBM Corp., 2004.
[15] B. Roehm et al., IBM WebSphere V¢
Performance, Scalability, and High Availabil
WebSphere Handbook Series. Redbooks IBM Ci
2004.
[16] P. Asadzadeh et al., “Global ids and Software
Toolkits: A Study of Four Grid Middlewal
Technologies,”
High-Performance Computi— Paradigm and
Infrastructure, 2006.

Page 677

