
International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016

 www.ijcrd.com Page 701

Accelerating Biomedical Imaging using parallel
Fuzzy C-Means Algorithm

Vindhya D S
PG Student
Dept of CSE

Acharya Institute of Technology
Bengaluru, Karnataka, India
vindhyads@gmail.com

 V Nagaveni
Assistant Professor

Dept of CSE
Acharya Institute of Technology

Bengaluru, Karnataka, India
nagaveni@acharya.ac.in

Abstract : The focus is mainly on the development,
acquisition and image reconstruction strategies, using MRI, to
accurately and quantitatively image physiology. Primary
applications include functional brain imaging, structural brain
imaging, and neuromuscular. The software used is OpenACC,
to accelerate their advanced imaging model. OpenACC is a
directive based programming model designed for scientists
and researchers looking to tap into the computational power
of accelerators without significant programming effort. This
software provides the significant speed-ups using the new PGI
compiled software on the NVIDIA GPU. Hence it is now able
to develop some other application software that reduced the
time it would normally take to reconstruct the MRI scan from
40 days down to a couple of hours, OpenACC also allowed to
run on one of the fastest supercomputers in the world.

Keywords : OpenACC, MRI, FCM, GPU.

1. INTRODUCTION
In the past decades, medical image has been

commonly used to facilitate the clinic diagnosis. Various
imaging techniques such as X-rays, Ultrasounds, Computed
Tomography scans (CT) or Magnetic Resonance Images
(MRIs) have been used to sense the irregularities in human
body. The physicians identify the tumors, tissues, and the
anatomical structures according to all of these images. To
detect abnormality in brain the brain MRI is useful medical
imaging tool. In general, the brain MRI can be classified into
three significant regions, such as matter (WM), grey matter
(GM) and cerebrospinal fluid spaces (CSF). Many image-
processing technologies have been used to copy with medical
images; especially image segmentation technologies. The
image segmentation is the process to split image data to a
serial of non-overlapping homogeneous region. It has been
used to analyze medical images for facilitating diagnosis and
therapy. In addition, it can be used to reconstruct image,
where it is useful to identify the abnormality in the brain. For
the brain MRI, the image segmentation techniques are
essential for clinic diagnosis, as they are used to classify WM,
GM and CSF regions from observed image. The physicians
can determine abnormality in the patient brain from these
regions.

Clustering is one of the image segmentation techniques.
Clustering is the process of classifying data into group of

similarity. Some of clustering algorithms have been
commonly adopted in computer, engineering and mathematics
field. Similarly, the clustering algorithms have also been
extended to medical fields. Clustering algorithms, such as K-
means (KM) clustering, Moving K-means (MKM) and Fuzzy
C-means, have been proposed to make the analysis of the
brain MRI easier. Fuzzy C-means (FCM) algorithm [4] has
been proved to achieve the better segmentation efficiency
over the other clustering approaches. But the drawback of
these clustering algorithms is the huge computational time
required for convergence. In recent years, many high
performance hardware and software technologies have been
released, such as Intel and AMD multi-core systems, graphic
processing units (GPU), OpenMP, OpenCL, CUDA and
Hadoop. In these new technologies, the development of GPU
is rapidly growing, and it has been used to accelerate
computation-consuming applications. The GPU devices
consist of up to hundreds cores per-chip, and it can issue the
thousands of threads to fully utilize its computational power.
GPU is not only adopted to develop graphic application but
also utilized to solve general computing problem. The
General-Purpose computing on Graphics Processing Units
(GPGPU) such as Open Computing Language (OpenCL) and
compute unified device architecture (CUDA), has
successfully made supercomputing available to variety of
applications. NVIDIA’s new Kepler GK110 GPU raises the
parallel computing bar considerably and will help solve the
world’s most difficult computing problems. By offering
much higher processing power than the prior GPU generation
and by providing new methods to optimize and increase
parallel workload execution on the GPU, 2.Kepler GK110 ‐
Extreme Performance, Extreme Efficiency Comprising 7.1
billion transistors, Kepler GK110 is not only the fastest, but
also the most architecturally complex microprocessor ever
built. Adding many new innovative features focused on
compute performance, GK110 was designed to be a parallel
processing powerhouse for Tesla® and the HPC market.
Kepler GK110 will provide over 1 TFlop of double precision
throughput with greater than 80% DGEMM efficiency versus
60‐65% on the prior Fermi architecture. In addition to
greatly improved performance, the Kepler architecture offers
a huge leap forward in power efficiency, delivering up to 3x
the performance per watt of Fermi. The following new
features in Kepler GK110 enable increased GPU utilization,
simplify parallel program design, and aid in the deployment of
GPUs across the spectrum of compute environments ranging
from personal workstations to supercomputers. .

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016

 www.ijcrd.com Page 702

II RELATED WORK
 1.THE QUADRO FX 5600 GRAPHICS CARD
The Quadro FX 5600 is a graphics card equipped with a G80
graphics processing unit (GPU). The Quadro has a large set of
processor cores that can directly address a global memory.
This architecture supports the single instruction, multiple-data
(SIMD) programming model, which is more general and
flexible than the programming models supported by previous
generations of GPUs, and which allows developers to easily
implement data-parallel algorithms. In this section we discuss
NVIDIA's Compute United Device Architecture (CUDA) and
the architectural features of the G80 that are most relevant to
accelerating MRI reconstructions. More complete descriptions
are found in from the application developer's perspective, the
CUDA programming model consists of ANSI C supported by
several keywords and constructs. CUDA treats the GPU as a
coprocessor that executes data-parallel kernel functions. The
developer supplies a single source program encompassing
both host (CPU) and kernel (GPU) code. NVIDIA's compiler,
nvcc, separates the host and kernel codes, which are then
compiled by the host compiler and nvcc, respectively. The
host code transfers data to and from the GPU's global memory
via API calls, and initiates the kernel code by calling a
function.

Figure1 Architecture of Quadro FX 5600

Figure 1 depicts the Quadro’s architecture. The G80 GPU
consists of 16 streaming multiprocessors (SMs), each
containing eight streaming processors (SPs), or processor
cores, running at 1.35 GHz. Each SM has 8,192 registers that
are shared among all threads assigned to the SM. The threads
on a given SM's cores execute in SIMD (single-instruction,
multiple-data) fashion, with the instruction unit broadcasting
the current instruction to the eight cores. Each core has a
single arithmetic unit that performs single-precision floating
point arithmetic and 32-bit integer operations. Additionally,
each SM has two special functional units (SFUs), which
perform more complex FP operations such as the
trigonometric functions with low latency. Both the arithmetic
units and the SFUs are fully pipelined. Thus, each SM can
perform 18 FLOPS per clock cycle (one multiply-add
operation per SP and one complex operation per SFU),
yielding 388.8 GFLOPS (16 SM * 18 FLOP/SM * 1.35 GHz)
of peak theoretical performance for the GPU. The Quadro has
76.8 GB/s of bandwidth to its 1.5 GB, o_- chip, global
memory. Nevertheless, with computational resources
supporting nearly 400 GFLOPS and each multiply add
instruction operating on up to 16 bytes of data, applications

can easily saturate that bandwidth. Therefore, as depicted in
Figure 2, the G80 has several on-chip memories that can
exploit data locality and data sharing to reduce an
application's demands for o_-chip memory bandwidth. For
example, the Quadro has a 64 KB, o_-chip constant memory,
and each SM has an 8 KB constant memory cache. Because
the cache is single-ported, simultaneous accesses of direct
addresses yield stalls. However, when multiple threads access
the same address during the same cycle, the cache broadcasts
that address's value to those threads with the same latency as a
register access. This feature proves beneficial for the MRI
reconstruction algorithm. In addition to the constant memory
cache, each SM has a 16KB shared memory for data that is
either written and reused or shared among threads. Finally, for
read-only data that is shared by many threads but not
necessarily accessed simultaneously by all threads, the o_-
chip texture memory and the on-chip texture caches exploit
2D data locality to substantially reduce memory latency.
Threads executing on the G80 are organized into a three level
hierarchy. At the highest level, each kernel creates a single
grid, which consists of many thread blocks. The maximum
number of threads per block is 512. Each thread block is
assigned to a single SM for the duration of its execution.
Threads in the same block can share data through the shared
memory and can perform barrier synchronization by invoking
the sync threads primitive. Threads are otherwise
independent, and synchronization across thread blocks is
safely accomplished by terminating the kernel. Finally,
threads within a block are organized into warps of 32 threads.
Each warp executes in SIMD fashion, with the SM's
instruction unit broadcasting the same instruction to the eight
cores on four consecutive clock cycles. SMs can interleave
warps on an instruction-by-instruction basis to hide the
latency of global memory accesses and long latency
arithmetic operations. When one warp stalls, the SM can
quickly switch to a ready warp in the same thread block or in
some other thread block assigned to the SM. The SM stalls
only if there are no warps with all operands available. Tuning
the performance of a CUDA kernel often involves a
fundamental trade-o_ between the efficiency of individual
threads and the thread-level parallelism (TLP) among all
threads. This trade-o_ exists because many optimizations that
improve the performance of an individual thread tend to
increase the thread's use of limited resources that are shared
among all threads assigned to an SM. For example, as each
thread's register usage increases, the total number of threads
that can simultaneously occupy the SM decreases. Because
threads are assigned to an SM not individually, but in large
thread blocks, a small increase in register usage can cause a
correspondingly much larger decrease in SM occupancy.

2 KEPLER GK110GPU ARCHITECTURE

 NVIDIA’s new Kepler GK110 GPU raises the parallel
computing bar considerably and will help solve the world’s
most difficult computing problems. By offering much higher
processing power than the prior GPU generation and by
providing new methods to optimize and increase parallel
workload execution on the GPU, 2.Kepler GK110 ‐ Extreme
Performance, Extreme Efficiency Comprising 7.1 billion
transistors, Kepler GK110 is not only the fastest, but also the
most architecturally complex microprocessor ever built.
Adding many new innovative features focused on compute
performance, GK110 was designed to be a parallel processing

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016

 www.ijcrd.com Page 703

powerhouse for Tesla® and the HPC market. Kepler GK110
will provide over 1 TFlop of double precision throughput with
greater than 80% DGEMM efficiency versus 60‐65% on the
prior Fermi architecture. In addition to greatly improved
performance, the Kepler architecture offers a huge leap
forward in power efficiency, delivering up to 3x the
performance per watt of Fermi. The following new features in
Kepler GK110 enable increased GPU utilization, simplify
parallel program design, and aid in the deployment of GPUs
across the spectrum of compute environments ranging from
personal workstations to supercomputers:

Dynamic Parallelism – adds the capability for the GPU to
generate new work for itself, synchronize on results, and
control the scheduling of that work via dedicated, accelerated
hardware paths, all without involving the CPU. By providing
the flexibility to adapt to the amount and form of parallelism
through the course of a program's execution, programmers can
expose more varied kinds of parallel work and make the most
efficient use the GPU as a computation evolves. This
capability allows less structured, more complex tasks to run
easily and effectively, enabling larger portions of an
application to run entirely on the GPU. In addition, programs
are easier to create, and the CPU is freed for other tasks.

Hyper-Q – Hyper-Q enables multiple CPU cores to launch
work on a single GPU simultaneously, thereby dramatically
increasing GPU utilization and significantly reducing CPU
idle times. Hyper -Q increases the total number of connections
(work queues) between the host and the GK110 GPU by
allowing 32 simultaneous, hardware managed connections
(compared to the single connection available with Fermi).
Hyper-Q is a flexible solution that allows separate
connections from multiple CUDA streams, from multiple
Message Passing Interface (MPI) processes, or even from
multiple threads within a process. Applications that previously
encountered false serialization across tasks, thereby limiting
achieved GPU utilization, can see up to dramatic performance
increase without changing any existing code.

Grid Management Unit – Enabling Dynamic Parallelism
requires an advanced, flexible grid management and dispatch
control system. The new GK110 Grid Management Unit
(GMU) manages and prioritizes grids to be executed on the
GPU. The GMU can pause the dispatch of new grids and
queue pending and suspended grids until they are ready to
execute, providing the flexibility to enable powerful runtimes,
such as Dynamic Parallelism. The GMU ensures both
CPU and GPU generated workloads are properly managed
and dispatched.

NVIDIA GPUDirect™ – NVIDIA GPUDirect™ is a
capability that enables GPUs within a single computer, or
GPUs in different servers located across a network, to directly
exchange data without needing to go to CPU/system memory.
The RDMA feature in GPUDirect allows third party devices
such as SSDs, NICs, and IB adapters to directly access
memory on multiple GPUs within the same system,
significantly decreasing the latency of MPI send and receive
messages to/from GPU memory. It also reduces demands on
system memory bandwidth and frees the GPU DMA engines
for use by other CUDA tasks. Kepler GK110 also supports
other GPUDirect features including Peer to Peer and
GPUDirect for Video.

Macintosh, use the font named Times. Right margins should
be justified, not ragged.

Figure 2 Overview of GK110/ Kepler architecture

 An Overview of the GK110 Kepler Architecture Kepler
GK110 was built first and foremost for Tesla, and its goal was
to be the highest performing parallel computing
microprocessor in the world. GK110 not only greatly exceeds
the raw compute horsepower delivered by Fermi, but it does
so efficiently, consuming significantly less power and
generating much less heat output. A full Kepler GK110
implementation includes 15 SMX units and six 64-bit memory
controllers. Different products will use different
configurations of GK110. For example, some products may
deploy 13 or 14 SMXs. Key features of the architecture that
will be discussed below in more depth include:
1. The new SMX processor architecture
2. An enhanced memory subsystem, offering additional
caching capabilities, more bandwidth at each level of the
hierarchy, and a fully redesigned and substantially faster
DRAM I/O implementation.
3. Hardware support throughout the design to enable new
programming model capabilities.

PERFORMANCE PER WATT -A principal design goal for
the Kepler architecture was improving power efficiency.
When designing Kepler, NVIDIA engineers applied
everything learned from Fermi to better optimize the Kepler
architecture for highly efficient operation. TSMC’s 28nm
manufacturing process plays an important role in lowering
power consumption, but many GPU architecture
modifications were required to further reduce power
consumption while maintaining great performance. Every
hardware unit in Kepler was designed and scrubbed to provide
outstanding performance per watt.

2.1 Streaming Multiprocessor (SMX)
Architecture

Streaming Multiprocessor (SMX) Architecture Kepler
GK110’s new SMX introduces several architectural
innovations that make it not only the most powerful
multiprocessor we’ve built, but also the most programmable
and power efficient. SMX: 192 single precision CUDA
cores, 64 double precision units, 32 special function units

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016

 www.ijcrd.com Page 704

(SFU), and 32 load/store units (LD/ST). SMX Processing
Core Architecture Each of the Kepler GK110 SMX units
feature 192 single-precision CUDA cores, and each core has
fully pipelined floating-point and integer arithmetic logic
units. Kepler retains the full IEEE 754/2008 compliant
single and double precision arithmetic introduced in Fermi,
including the fused multiply add (FMA) operation. One of the
design goals for the Kepler GK110 SMX was to significantly
increase the GPU’s delivered double precision performance,
since double precision arithmetic is at the heart of many HPC
applications. Kepler GK110’s SMX also retains the special
function units (SFUs) for fast approximate transcendental
operations as in previous-generation GPUs, providing 8x the
number of SFUs of the Fermi GF110 SM. Similar to GK104
SMX units, the cores within the new GK110 SMX units use
the primary GPU clock rather than the 2x shader clock. Recall
the 2x shader clock was introduced in the G80
Tesla‐architecture GPU and used in all subsequent Tesla‐ and
Fermi‐architecture GPUs. Running execution units at a higher
clock rate allows a chip to achieve a given target throughput
with fewer copies of the execution units, which is essentially
an area optimization, but the clocking logic for the faster
cores is more power‐hungry.

Figure 3 Streaming Multiprocessor (Smx) Architecture

III PROPOSED ALGORITHM

• Fuzzy C Means algorithm: This algorithm works
by assigning membership to each data point
corresponding to each cluster center on the basis of
distance between the cluster center and the data
point. More the data is near to the cluster center
more is its membership towards the particular
cluster center. Clearly, summation of membership
of each data point should be equal to one. After
each iteration membership cluster centers are
updated according to the formula:

Where,

'n' is the number of data points
'vj' represents the jth cluster center.
'm' is the fuzziness index m € [1,∞].
'c' represents the number of cluster center.
'µij' represents the membership of ith data
to jth cluster center.
'dij' represents the Euclidean distance
between ith data and jth cluster center.

Main objective of fuzzy c-means algorithm is to minimize:

where,
 '||xi – vj||' is the Euclidean distance between ith data
 and j th cluster center.

ALGORITHMIC STEPS FOR FUZZY C-MEANS
CLUSTERING
Let X = {x1, x2, x3 ..., xn} be the set of data points and V =
{v 1, v2, v3 ..., vc} be the set of centers.
1) Randomly select ‘c’ cluster centers.
2) calculate the fuzzy membership 'µij ' using:

3) compute the fuzzy centers 'vj' using:

4) Repeat step 2) and 3) until the minimum 'J' value is
achieved or ||U(k+1) - U(k)|| < β.
 where,
 ‘k’ is the iteration step.
 ‘β’ is the termination criterion between [0, 1].
 ‘U = (µ ij)n*c’ is the fuzzy membership matrix.
 J’ is the objective function.

ADVANTAGES
1) Gives best result for overlapped data set and comparatively
better then k-means algorithm.
2) Unlike k-means where data point must exclusively belong
to one cluster center here data point is assigned membership
to each cluster center as a result of which data point may
belong to more than one cluster centers.

DISADVANTAGES

1) Apriori specification of the number of clusters.
2) With lower value of β we get the better result but
at the expense of more number of iteration.
3) Euclidean distance measures can unequally
weight underlying factors

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016

 www.ijcrd.com Page 705

IV FLOW OF GPU-BASED FCM
CLUSTERING

Figure 4 The process diagram of the proposed algorithm.

The kernel FCM part (gray box) is re-designed for
execution on GPU as shown in Figure 3.. It includes
following 9 steps:
1. Image Conversion
This step is to cover the original brain MRI to Grayscale
image. Usually the format of the covered grayscale image
is 8-bit. The input image is transferred into a gray-scale
image that all the value of pixels are between 0 and 1.

2. Cluster Setting
This step is to set the number of clusters. The cluster
number c is determined in FCM. The proper is the key to
obtain the good result of FCM algorithm. In general, c is
unknown, and c = {1, 2… n}. For the segmentation of
brain MRI, c is set to 2.

3. FCM Initializing
This step is to select the initial center of cluster. Typically,
the performance of FCM depends on the initial cluster
center and/or the initial membership matrix. If an initial
cluster center that is close to the actual final cluster center,
then FCM will converge in short.

4. New Center Selection

This step is to select the new centers of the clusters.
This step is implemented in GPU. Each thread is
response to calculate an element of u. The pseudo
code is shown in Figure 5.

Figure 5 The pseudo code of step of the selection of new

center

5. Distance Calculation
The distance between a data point and the cluster center in
this step, d is calculated in this step. The thread i calculates d
(xi, �j), j Σ{1, 2}. The pseudo code is shown in Figure 6.

Figure 6 .The pseudo code of step of calculation of distance
between center and a data point

6. Objective Function Calculation
This step is to calculate the objective value by objective
function; the distance matrix is recalculated on GPU in this
step. The objective value J is calculated by CPU. The pseudo
code is shown in Figure 7.

Figure 7.The pseudo code of step of objective value.

7. Membership Updating
This step is to calculate the new membership matrix u for next
iteration, and this step is performed on GPU. The pseudo code
is shown in Figure 8.

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016

 www.ijcrd.com Page 706

Figure 8. The pseudo code of step of new u membership

matrix

8. Optimization Checking
This step is to check whether the objective function is
converged or not. If |Jm-Jm-1| є, then FCM stops.є� is a
small positive constant.

9 Image output
The final value is calculated in the steps above. This value is
utilized to verify the color of the pixels. If the value of a pixel
is greater the final value of center, it is black, and vice versa.
Final image is converted to binary image with black and white
color of pixels.

V IMPLEMENTATION USING
OPENACC

OpenACC directives are the fast, simple and portable way to
accelerate your scientific code. With OpenACC, you insert
compiler hints – in the form of OpenMP-like directives into
the compute-intensive portions of even the largest, most
complex FORTRAN or C application, and the compiler
automatically maps that code to an accelerator – including
NVIDIA GPUs for higher performance. (OpenACC is fully
compatible and interoperates with OpenMP and MPI.)
OpenACC compilers are:

• Portable: Future-proof your codes with this open
 Standard

• Fast: Straight forward, high-level, compiler driven
 Approach to parallel computing

• Powerful: Ideal for accelerating large, legacy Fortran
 Or C codes

2X IN 5 STEPS
Most developers who try OpenACC see speedups of from 2 to
10X, following five key steps:

1. Evaluate and plan

2. Add parallel directives

3. Add data movement directives

4. Tune data movement

5. Optimize parallel scheduling

VI EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this work, the proposed GPU based FCM algorithm is
implemented on two different NVIDIA GPU devices, such

as NVIDIA KEPLER GK110 with 192 single precision
CUDA cores and 64 bit memory controller, and NVIDIA
Quadro FX5600. The hosts (CPU) are Intel Xeon E3-1230 v2
3.30GHz and Intel Xeon E3-1231 v3 3.40GHz with 64GB
RAM, respectively. The CUDA version is 6.5. The input
brain MRIs are download from the brain web datasets.

Figure 9 shows the input images and Figure 10 shows
the processed images. The experimental results shows that
the proposed algorithm can obtain the same quality results as
original FCM, and it can achieve significant speed up over
the original FCM executed on very powerful CPU. The
comparison of the performance between the proposed GPU
based FCM algorithm and traditional FCM is show in Table
1. The Cost/Performance (CP) ratio shows that the proposed
algorithm is valuable for analysis of MR brain image.

Table 1.Comparison OF Results obtained using
Sequential,Parallel GPU(Quadro andKepler) Architectures

 CPU

Intel

E3-1230

CPU

Intel

E3-1231

GPU

NVIDIA

Quadro

GPU

NVIDIA

Kepler

GK110
MRI1a and b

(1280*801)
17.57 15.0 11.26 9.6

MRI2(512*512) 4.89 4.34 3.56 3.0

MRI3(1150*1280) 25.18 23.89 16.92 15.6

MRI4(512*512) 5.08 5.03 3.52 3.1

MRI5(512*512) 5.13 4.48 3.41 3.0

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016

 www.ijcrd.com Page 707

Figure 9 The original brain MR image

Figure 10 The processed brain mr image by GPU based on
FCM algorithm

VII .CONCLUSION

Fuzzy C- Means algorithm gives best result for
overlapped data set and comparatively better than k-means
algorithm. Unlike k-means where data point must exclusively
belong to one cluster center here data point is assigned
membership to each cluster center as a result of which data
point may belong to more than one cluster center. For the
segmentation of brain MRI, FCM is a commonly used and
efficient algorithm. However, it is computational-consuming
algorithm. A Parallel FCM algorithm based on GPU to
enhance the computation performance. The significant speed-
ups using their new PGI compiled software OpenACC on the
NVIDIA GPU. 2.Kepler GK110 ‐ Extreme Performance,
Extreme Efficiency Comprising 7.1 billion transistors, Kepler

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: 6; June-2016

 www.ijcrd.com Page 708

GK110 is not only the fastest, but also the most architecturally
complex microprocessor ever built. Kepler GK110 will
provide over 1 TFlop of double precision throughput with
greater than 80% DGEMM efficiency versus 60‐65% on the
prior Fermi architecture. In addition to greatly improved
performance, the Kepler architecture offers a huge leap
forward in power efficiency, delivering up to 3x the
performance per watt of Fermi.

VIII REFERENCES

[1]2015 NVIDIA Corporation, UNIVERSITY OF ILLINOIS,
"Accelerating
Biomedical Imaging”

[2]Che-Lun Hung, Yuan-Huai Wu, Yaw-Ling Lin, Yu-Chen
Hu, Jieh-Shan Yeh, Chia-Chen Lin ” GPU -based Fuzzy C
Means Clustering Model For Brain MR Image” Proc. of the
Third Intl. Conf. Advances in Computing, Communication
and Information Technology- CCIT 2015

[3]Whitepaper ,NVIDIA’s Next Generation CUDATM
Compute Architecture: Kepler TM GK110

[4] M. Rakesh, amd T. Ravi, "Image Segmentation and
Detection of
Tumor Objects in MR Brain Images Using Fuzzy C-means
(FCM)
Algorithm," International Journal of engineering Research and
application,vol.2,2012.pp.2088-2094.

[5]NCBIhttps://en.wikipedia.org/.../National_Center_for_Biot
echnology_Information.

