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Abstract :  The focus is mainly on the development, 
acquisition and image reconstruction strategies, using MRI, to 
accurately and quantitatively image physiology. Primary 
applications include functional brain imaging, structural brain 
imaging, and neuromuscular. The software used is OpenACC, 
to accelerate their advanced imaging model. OpenACC is a 
directive based programming model designed for scientists 
and researchers looking to tap into the computational power 
of accelerators without significant programming effort. This 
software provides the significant speed-ups using the new PGI 
compiled software on the NVIDIA GPU. Hence it is now able 
to develop some other application software that reduced the 
time it would normally take to reconstruct the MRI scan from 
40 days down to a couple of  hours, OpenACC also allowed to 
run on one of the fastest supercomputers in the world.   

Keywords : OpenACC, MRI, FCM, GPU. 

1. INTRODUCTION 
In the past decades, medical image has been 

commonly used to facilitate the clinic diagnosis. Various 
imaging techniques such as X-rays, Ultrasounds, Computed 
Tomography scans (CT) or Magnetic Resonance Images 
(MRIs) have been used to sense the irregularities in human 
body. The physicians identify the tumors, tissues, and the 
anatomical structures according to all of these images. To 
detect abnormality in brain the brain MRI is useful medical 
imaging tool. In general, the brain MRI can be classified into 
three significant regions, such as matter (WM), grey matter 
(GM) and cerebrospinal fluid spaces (CSF). Many image-
processing technologies have been used to copy with medical 
images; especially image segmentation technologies. The 
image segmentation is the process to split image data to a 
serial of non-overlapping homogeneous region. It has been 
used to analyze medical images for facilitating diagnosis and 
therapy. In addition, it can be used to reconstruct image, 
where it is useful to identify the abnormality in the brain. For 
the brain MRI, the image segmentation techniques are 
essential for clinic diagnosis, as they are used to classify WM, 
GM and CSF regions from observed image. The physicians 
can determine abnormality in the patient brain from these 
regions.  
 
Clustering is one of the image segmentation techniques. 
Clustering is the process of classifying data into group of 

similarity. Some of clustering algorithms have been 
commonly adopted in computer, engineering and mathematics 
field. Similarly, the clustering algorithms have also been 
extended to medical fields. Clustering algorithms, such as K-
means (KM) clustering, Moving K-means (MKM) and Fuzzy 
C-means, have been proposed to make the analysis of the 
brain MRI easier. Fuzzy C-means (FCM) algorithm [4] has 
been proved to achieve the better segmentation efficiency 
over the other clustering approaches. But the drawback of 
these clustering algorithms is the huge computational time 
required for convergence. In recent years, many high 
performance hardware and software technologies have been 
released, such as Intel and AMD multi-core systems, graphic 
processing units (GPU), OpenMP, OpenCL, CUDA and 
Hadoop. In these new technologies, the development of GPU 
is rapidly growing, and it has been used to accelerate 
computation-consuming applications. The GPU devices 
consist of up to hundreds cores per-chip, and it can issue the 
thousands of threads to fully utilize its computational power. 
GPU is not only adopted to develop graphic application but 
also utilized to solve general computing problem. The 
General-Purpose computing on Graphics Processing Units 
(GPGPU) such as Open Computing Language (OpenCL)  and 
compute unified device architecture (CUDA), has 
successfully made supercomputing available to variety of 
applications. NVIDIA’s new Kepler GK110 GPU raises the 
parallel computing bar considerably and will help solve the 
world’s most difficult computing problems.   By offering 
much higher processing power than the prior GPU generation 
and by providing new methods to optimize and increase 
parallel workload execution on the GPU, 2.Kepler GK110 ‐ 
Extreme Performance, Extreme Efficiency Comprising 7.1 
billion transistors, Kepler GK110 is not only the fastest, but 
also the most architecturally complex microprocessor ever 
built. Adding many new innovative features focused on 
compute performance, GK110 was designed to be a parallel 
processing powerhouse for Tesla® and the HPC market. 
Kepler GK110 will provide over 1 TFlop of double precision 
throughput with greater than 80% DGEMM efficiency versus 
60‐65% on the prior Fermi architecture.   In addition to 
greatly improved performance, the Kepler architecture offers 
a huge leap forward in power efficiency, delivering up to 3x 
the performance per watt of Fermi. The following new 
features in Kepler GK110 enable increased GPU utilization, 
simplify parallel program design, and aid in the deployment of 
GPUs across the spectrum of compute environments ranging 
from personal workstations to supercomputers. .  
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II RELATED WORK 
 1.THE QUADRO FX 5600 GRAPHICS CARD 
The Quadro FX 5600 is a graphics card equipped with a G80 
graphics processing unit (GPU). The Quadro has a large set of 
processor cores that can directly address a global memory. 
This architecture supports the single instruction, multiple-data 
(SIMD) programming model, which is more general and 
flexible than the programming models supported by previous 
generations of GPUs, and which allows developers to easily 
implement data-parallel algorithms. In this section we discuss 
NVIDIA's Compute United Device Architecture (CUDA) and 
the architectural features of the G80 that are most relevant to 
accelerating MRI reconstructions. More complete descriptions 
are found in from the application developer's perspective, the 
CUDA programming model consists of ANSI C supported by 
several keywords and constructs. CUDA treats the GPU as a 
coprocessor that executes data-parallel kernel functions. The 
developer supplies a single source program encompassing 
both host (CPU) and kernel (GPU) code. NVIDIA's compiler, 
nvcc, separates the host and kernel codes, which are then 
compiled by the host compiler and nvcc, respectively. The 
host code transfers data to and from the GPU's global memory 
via API calls, and initiates the kernel code by calling a 
function. 

Figure1 Architecture of Quadro FX 5600 

Figure 1 depicts the Quadro’s architecture. The G80 GPU 
consists of 16 streaming multiprocessors (SMs), each 
containing eight streaming processors (SPs), or processor 
cores, running at 1.35 GHz. Each SM has 8,192 registers that 
are shared among all threads assigned to the SM. The threads 
on a given SM's cores execute in SIMD (single-instruction, 
multiple-data) fashion, with the instruction unit broadcasting 
the current instruction to the eight cores. Each core has a 
single arithmetic unit that performs single-precision floating 
point arithmetic and 32-bit integer operations. Additionally, 
each SM has two special functional units (SFUs), which 
perform more complex FP operations such as the 
trigonometric functions with low latency. Both the arithmetic 
units and the SFUs are fully pipelined. Thus, each SM can 
perform 18 FLOPS per clock cycle (one multiply-add 
operation per SP and one complex operation per SFU), 
yielding 388.8 GFLOPS (16 SM * 18 FLOP/SM * 1.35 GHz) 
of peak theoretical performance for the GPU. The Quadro has 
76.8 GB/s of bandwidth to its 1.5 GB, o_- chip, global 
memory. Nevertheless, with computational resources 
supporting nearly 400 GFLOPS and each multiply add 
instruction operating on up to 16 bytes of data, applications 

can easily saturate that bandwidth. Therefore, as depicted in 
Figure 2, the G80 has several on-chip memories that can 
exploit data locality and data sharing to reduce an 
application's demands for o_-chip memory bandwidth. For 
example, the Quadro has a 64 KB, o_-chip constant memory, 
and each SM has an 8 KB constant memory cache. Because 
the cache is single-ported, simultaneous accesses of direct 
addresses yield stalls. However, when multiple threads access 
the same address during the same cycle, the cache broadcasts 
that address's value to those threads with the same latency as a 
register access. This feature proves  beneficial for the MRI 
reconstruction algorithm. In addition to the constant memory 
cache, each SM has a 16KB shared memory for data that is 
either written and reused or shared among threads. Finally, for 
read-only data that is shared by many threads but not 
necessarily accessed simultaneously by all threads, the o_-
chip texture memory and the on-chip texture caches exploit 
2D data locality to substantially reduce memory latency. 
Threads executing on the G80 are organized into a three level 
hierarchy. At the highest level, each kernel creates a single 
grid, which consists of many thread blocks. The maximum 
number of threads per block is 512. Each thread block is 
assigned to a single SM for the duration of its execution. 
Threads in the same block can share data through the shared 
memory and can perform barrier synchronization by invoking 
the sync threads primitive. Threads are otherwise 
independent, and synchronization across thread blocks is 
safely accomplished by terminating the kernel. Finally, 
threads within a block are organized into warps of 32 threads. 
Each warp executes in SIMD fashion, with the SM's 
instruction unit broadcasting the same instruction to the eight 
cores on four consecutive clock cycles. SMs can interleave 
warps on an instruction-by-instruction basis to hide the 
latency of global memory accesses and long latency 
arithmetic operations. When one warp stalls, the SM can 
quickly switch to a ready warp in the same thread block or in 
some other thread block assigned to the SM. The SM stalls 
only if there are no warps with all operands available. Tuning 
the performance of a CUDA kernel often involves a 
fundamental trade-o_ between the efficiency of individual 
threads and the thread-level parallelism (TLP) among all 
threads. This trade-o_ exists because many optimizations that 
improve the performance of an individual thread tend to 
increase the thread's use of limited resources that are shared 
among all threads assigned to an SM. For example, as each 
thread's register usage increases, the total number of threads 
that can simultaneously occupy the SM decreases. Because 
threads are assigned to an SM not individually, but in large 
thread blocks, a small increase in register usage can cause a 
correspondingly much larger decrease in SM occupancy. 
 
2 KEPLER GK110GPU ARCHITECTURE 
 
            NVIDIA’s new Kepler GK110 GPU raises the parallel 
computing bar considerably and will help solve the world’s 
most difficult computing problems.   By offering much higher 
processing power than the prior GPU generation and by 
providing new methods to optimize and increase parallel 
workload execution on the GPU, 2.Kepler GK110 ‐ Extreme 
Performance, Extreme Efficiency Comprising 7.1 billion 
transistors, Kepler GK110 is not only the fastest, but also the 
most architecturally complex microprocessor ever built. 
Adding many new innovative features focused on compute 
performance, GK110 was designed to be a parallel processing 
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powerhouse for Tesla® and the HPC market. Kepler GK110 
will provide over 1 TFlop of double precision throughput with 
greater than 80% DGEMM efficiency versus 60‐65% on the 
prior Fermi architecture.  In addition to greatly improved 
performance, the Kepler architecture offers a huge leap 
forward in power efficiency, delivering up to 3x the 
performance per watt of Fermi. The following new features in 
Kepler GK110 enable increased GPU utilization, simplify 
parallel program design, and aid in the deployment of GPUs 
across the spectrum of compute environments ranging from 
personal workstations to supercomputers:    
 
Dynamic Parallelism – adds the capability for the GPU to 
generate new work for itself, synchronize on results, and 
control the scheduling of that work via dedicated, accelerated 
hardware paths, all without involving the CPU. By providing 
the flexibility to adapt to the amount and form of parallelism 
through the course of a program's execution, programmers can 
expose more varied kinds of parallel work and make the most 
efficient use the GPU as a computation evolves. This 
capability allows less structured, more complex tasks to run 
easily and effectively, enabling larger portions of an 
application to run entirely on the GPU. In addition, programs 
are easier to create, and the CPU is freed for other tasks.   
 
Hyper-Q – Hyper-Q enables multiple CPU cores to launch 
work on a single GPU simultaneously, thereby dramatically 
increasing GPU utilization and significantly reducing CPU 
idle times. Hyper -Q increases the total number of connections 
(work queues) between the host and the GK110 GPU by 
allowing 32 simultaneous, hardware managed connections 
(compared to the single connection available with Fermi). 
Hyper-Q is a flexible solution that allows separate 
connections from multiple CUDA streams, from multiple 
Message Passing Interface (MPI) processes, or even from 
multiple threads within a process. Applications that previously 
encountered false serialization across tasks, thereby limiting 
achieved GPU utilization, can see up to dramatic performance 
increase without changing any existing code.     
 
Grid Management Unit – Enabling Dynamic Parallelism 
requires an advanced, flexible grid management and dispatch 
control system. The new GK110 Grid Management Unit 
(GMU) manages and prioritizes grids to be executed on the 
GPU. The GMU can pause the dispatch of new grids and 
queue pending and suspended grids until they are ready to 
execute, providing the flexibility to enable powerful runtimes, 
such as Dynamic Parallelism. The GMU ensures both 
CPU and GPU generated workloads are properly managed 
and dispatched.   
 
NVIDIA GPUDirect™ – NVIDIA GPUDirect™ is a 
capability that enables GPUs within a single computer, or 
GPUs in different servers located across a network, to directly 
exchange data without needing to go to CPU/system memory. 
The RDMA feature in GPUDirect allows third party devices 
such as SSDs, NICs, and IB adapters to directly access 
memory on multiple GPUs within the same system, 
significantly decreasing the latency of MPI send and receive 
messages to/from GPU memory. It also reduces demands on 
system memory bandwidth and frees the GPU DMA engines 
for use by other CUDA tasks. Kepler GK110 also supports 
other GPUDirect features including Peer to Peer and 
GPUDirect for Video. 

Macintosh, use the font named Times.  Right margins should 
be justified, not ragged.  

  

 

Figure 2 Overview of GK110/ Kepler architecture 

         An Overview of the GK110 Kepler Architecture Kepler 
GK110 was built first and foremost for Tesla, and its goal was 
to be the highest performing parallel computing 
microprocessor in the world. GK110 not only greatly exceeds 
the raw compute horsepower delivered by Fermi, but it does 
so efficiently, consuming significantly less power and 
generating much less heat output. A full Kepler GK110 
implementation includes 15 SMX units and six 64-bit memory 
controllers.  Different products will use different 
configurations of GK110.  For example, some products may 
deploy 13 or 14 SMXs.   Key features of the architecture that 
will be discussed below in more depth include:  
1. The new SMX processor architecture 
2. An enhanced memory subsystem, offering additional 
caching capabilities, more bandwidth at each level of the 
hierarchy, and a fully redesigned and substantially faster 
DRAM I/O implementation. 
3. Hardware support throughout the design to enable new 
programming model capabilities. 
 
PERFORMANCE PER WATT -A principal design goal for 
the Kepler architecture was improving power efficiency. 
When designing Kepler, NVIDIA engineers applied 
everything learned from Fermi to better optimize the Kepler 
architecture for highly efficient operation. TSMC’s 28nm 
manufacturing process plays an important role in lowering 
power consumption, but many GPU architecture 
modifications were required to further reduce power 
consumption while maintaining great performance.  Every 
hardware unit in Kepler was designed and scrubbed to provide 
outstanding performance per watt. 
 

2.1 Streaming Multiprocessor (SMX) 
Architecture 
 
Streaming Multiprocessor (SMX) Architecture Kepler 
GK110’s new SMX introduces several architectural 
innovations that make it not only the most powerful 
multiprocessor we’ve built, but also the most programmable 
and power efficient.   SMX: 192 single precision CUDA 
cores, 64 double precision units, 32 special function units 
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(SFU), and 32 load/store units (LD/ST). SMX Processing 
Core Architecture Each of the Kepler GK110 SMX units 
feature 192 single-precision CUDA cores, and each core has 
fully pipelined floating-point and integer arithmetic logic 
units. Kepler retains the full IEEE 754/2008 compliant 
single and double precision arithmetic introduced in Fermi, 
including the fused multiply add (FMA) operation. One of the 
design goals for the Kepler GK110 SMX was to significantly 
increase the GPU’s delivered double precision performance, 
since double precision arithmetic is at the heart of many HPC 
applications. Kepler GK110’s SMX also retains the special 
function units (SFUs) for fast approximate transcendental 
operations as in previous-generation GPUs, providing 8x the 
number of SFUs of the Fermi GF110 SM. Similar to GK104 
SMX units, the cores within the new GK110 SMX units use 
the primary GPU clock rather than the 2x shader clock. Recall 
the 2x shader clock was introduced in the G80 
Tesla‐architecture GPU and used in all subsequent Tesla‐ and 
Fermi‐architecture GPUs. Running execution units at a higher 
clock rate allows a chip to achieve a given target throughput 
with fewer copies of the execution units, which is essentially 
an area optimization, but the clocking logic for the faster 
cores is more power‐hungry. 

 

Figure 3 Streaming Multiprocessor (Smx) Architecture 
 

III PROPOSED ALGORITHM 

• Fuzzy C Means algorithm: This algorithm works 
by assigning membership to each data point 
corresponding to each cluster center on the basis of 
distance between the cluster center and the data 
point. More the data is near to the cluster center 
more is its membership towards the particular 
cluster center. Clearly, summation of membership 
of each data point should be equal to one. After 
each iteration membership cluster centers are 
updated according to the formula: 

 

 
Where, 

'n' is the number of data points  
'vj' represents the jth cluster center. 
'm' is the fuzziness index m € [1,∞]. 
'c' represents the number of cluster center. 
'µij' represents the membership of ith data  
to jth cluster center. 
'dij' represents the Euclidean distance   
between ith data and jth cluster center. 

 
Main objective of fuzzy c-means algorithm is to minimize: 

 

where, 
              '||xi – vj||' is the Euclidean distance between ith data  
             and  j th cluster center. 

ALGORITHMIC STEPS FOR FUZZY C-MEANS 
CLUSTERING 
Let  X = {x1, x2, x3 ..., xn} be the set of data points and V = 
{v 1, v2, v3 ..., vc} be the set of centers. 
1) Randomly select ‘c’  cluster centers. 
2) calculate the fuzzy membership 'µij ' using: 

 
3) compute the fuzzy centers 'vj' using: 

 

4) Repeat step 2) and 3) until the minimum 'J' value is 
achieved or ||U(k+1) - U(k)|| < β.                             
 where,   
                      ‘k’ is the iteration step.   
                  ‘β’  is the termination criterion between [0, 1].  
                 ‘U = (µ ij)n*c’  is the fuzzy membership matrix.  
                      J’ is the objective function. 
 

ADVANTAGES 
1) Gives best result for overlapped data set and comparatively 
better then k-means algorithm. 
2) Unlike k-means where data point must exclusively belong 
to one cluster center here data point is assigned membership 
to each cluster center as a result of which data point may 
belong to more than one cluster centers. 
 

DISADVANTAGES 

1) Apriori specification of the number of clusters. 
2) With lower value of  β we get the better result but 
at the expense of  more number of iteration. 
3) Euclidean distance measures can unequally 
weight underlying factors 
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IV FLOW OF  GPU-BASED FCM 
CLUSTERING 

 

Figure 4 The process diagram of the proposed algorithm. 

The kernel FCM part (gray box) is re-designed for 
execution on GPU as shown in Figure 3.. It includes 
following 9 steps: 
1. Image Conversion 
This step is to cover the original brain MRI to Grayscale 
image. Usually the format of the covered grayscale image 
is 8-bit. The input image is transferred into a gray-scale 
image that all the value of pixels are between 0 and 1. 
 
2. Cluster Setting 
This step is to set the number of clusters. The cluster 
number c is determined in FCM. The proper is the key to 
obtain the good result of FCM algorithm. In general, c is 
unknown, and c = {1, 2… n}. For the segmentation of 
brain MRI, c is set to 2. 
 
3. FCM Initializing 
This step is to select the initial center of cluster. Typically, 
the performance of FCM depends on the initial cluster 
center and/or the initial membership matrix. If an initial 
cluster center that is close to the actual final cluster center, 
then FCM will converge in short. 
 
4. New Center Selection 

This step is to select the new centers of the clusters. 
This step is implemented in GPU. Each thread is 
response to calculate an element of u. The pseudo 
code is shown in Figure 5. 

 

Figure 5 The pseudo code of step of the selection of new 

center 

5. Distance Calculation 
The distance between a data point and the cluster center in 
this step, d is calculated in this step. The thread i calculates d 
(xi, �j), j Σ{1, 2}. The pseudo code is shown in Figure 6. 
 

 

Figure 6 .The pseudo code of step of calculation of distance 
between center and a data point 

 
6. Objective Function Calculation 
This step is to calculate the objective value by objective 
function; the distance matrix is recalculated on GPU in this 
step. The objective value J is calculated by CPU. The pseudo 
code is shown in Figure 7. 
 

 

Figure 7.The pseudo code of step of objective value. 
 
7. Membership Updating 
This step is to calculate the new membership matrix u for next 
iteration, and this step is performed on GPU. The pseudo code 
is shown in Figure 8. 
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Figure 8. The pseudo code of step of new u membership 

matrix 
 
8. Optimization Checking 
This step is to check whether the objective function is 
converged or not. If |Jm-Jm-1| є, then FCM stops.є� is a 
small positive constant. 
 
9 Image output 
The final value is calculated in the steps above. This value is 
utilized to verify the color of the pixels. If the value of a pixel 
is greater the final value of center, it is black, and vice versa. 
Final image is converted to binary image with black and white 
color of pixels. 

 

V IMPLEMENTATION USING 
OPENACC 
 
OpenACC directives are the fast, simple and portable way to 
accelerate your scientific code. With OpenACC, you insert 
compiler hints – in the form of OpenMP-like directives into 
the compute-intensive portions of even the largest, most 
complex FORTRAN or C application, and the compiler 
automatically maps that code to an accelerator – including 
NVIDIA GPUs for higher performance. (OpenACC is fully 
compatible and interoperates with OpenMP and MPI.) 
OpenACC compilers are: 

• Portable: Future-proof your codes with this open   
         Standard 

• Fast: Straight forward, high-level, compiler driven  
        Approach to parallel computing 

• Powerful: Ideal for accelerating large, legacy Fortran  
        Or C codes 

 
2X IN 5 STEPS 
Most developers who try OpenACC see speedups of from 2 to 
10X, following five key steps: 
 

1. Evaluate and plan 

2. Add parallel directives 

3. Add data movement directives 

4. Tune data movement 

5. Optimize parallel scheduling 
 

VI EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

In this work, the proposed GPU based FCM algorithm is 
implemented on two different NVIDIA GPU devices, such 

as NVIDIA KEPLER GK110 with 192 single precision 
CUDA cores and 64 bit memory controller, and NVIDIA 
Quadro FX5600. The hosts (CPU) are Intel Xeon E3-1230 v2 
3.30GHz and Intel Xeon E3-1231 v3 3.40GHz with 64GB 
RAM, respectively. The CUDA version is 6.5. The input 
brain MRIs are download from the brain web datasets. 
 
Figure 9  shows the input images and Figure 10  shows 
the processed images. The experimental results shows that 
the proposed algorithm can obtain the same quality results as 
original FCM, and it can achieve significant speed up over 
the original FCM executed on very powerful CPU. The 
comparison of the performance between the proposed GPU 
based FCM algorithm and traditional FCM is show in Table 
1. The Cost/Performance (CP) ratio shows that the proposed 
algorithm is valuable for analysis of MR brain image. 

 

 
Table 1.Comparison OF Results obtained using 
Sequential,Parallel GPU(Quadro andKepler) Architectures 
 

 CPU 

Intel 

E3-1230 

CPU 

Intel 

E3-1231 

GPU 

NVIDIA  

Quadro 

GPU 

NVIDIA 

Kepler 

GK110 
MRI1a and b 

(1280*801) 
17.57 15.0 11.26 9.6 

MRI2(512*512) 4.89 4.34 3.56 3.0 

MRI3(1150*1280) 25.18 23.89 16.92 15.6 

MRI4(512*512) 5.08 5.03 3.52 3.1 

MRI5(512*512) 5.13 4.48 3.41 3.0 
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Figure 9 The original brain MR image 
 

 
 
 
 
 
 
 

 

Figure 10 The processed brain mr image by GPU based on 
FCM algorithm 

 
 
 

VII .CONCLUSION  

Fuzzy C- Means algorithm gives best result for 
overlapped data set and comparatively better than k-means 
algorithm. Unlike k-means where data point must exclusively 
belong to one cluster center here data point is assigned 
membership to each cluster center as a result of which data 
point may belong to more than one cluster center. For the 
segmentation of brain MRI, FCM is a commonly used and 
efficient algorithm. However, it is computational-consuming 
algorithm. A Parallel FCM algorithm based on GPU to 
enhance the computation performance. The significant speed-
ups using their new PGI compiled software  OpenACC on the 
NVIDIA GPU. 2.Kepler GK110 ‐ Extreme Performance, 
Extreme Efficiency Comprising 7.1 billion transistors, Kepler 
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GK110 is not only the fastest, but also the most architecturally 
complex microprocessor ever built. Kepler GK110 will 
provide over 1 TFlop of double precision throughput with 
greater than 80% DGEMM efficiency versus 60‐65% on the 
prior Fermi architecture.   In addition to greatly improved 
performance, the Kepler architecture offers a huge leap 
forward in power efficiency, delivering up to 3x the 
performance per watt of Fermi. 
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