International Journal of Combined Research & Develpment (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: Bune-2016

Accelerating Biomedical Imaging using parallel
Fuzzy C-Means Algorithm

Vindhya D S
PG Student
Dept of CSE
Acharya Institute of Technology
Bengaluru, Karnataka, India

vindhyads@gmail.com

Abstract : The focus is mainly on the development,
acquisition and image reconstruction strategiesagusiRI, to
accurately and quantitatively image physiology. niary
applications include functional brain imaging, stural brain
imaging, and neuromuscular. The software used en@@C,
to accelerate their advanced imaging model. OpenAcC@&
directive based programming model designed fornsisis
and researchers looking to tap into the computatipower
of accelerators without significant programmingoeff This
software provides the significant speed-ups udiegiew PGI
compiled software on the NVIDIA GPU. Hence it ismable
to develop some other application software thaticed the
time it would normally take to reconstruct the MR&s from
40 days down to a couple of hours, OpenACC alsovalioto
run on one of the fastest supercomputers in thédwor

Keywords : OpenACC, MRI, FCM, GPU.
1. INTRODUCTION

In the past decades, medical image has been
commonly used to facilitate the clinic diagnosisaridus
imaging techniques such as X-rays, Ultrasounds, fCoea
Tomography scans (CT) or Magnetic Resonance Images
(MRIs) have been used to sense the irregularitielsuiman
body. The physicians identify the tumors, tissuasd the
anatomical structures according to all of thesegesa To
detect abnormality in brain the brain MRI is usefugdical
imaging tool. In general, the brain MRI can be dfass into
three significant regions, such as matter (WM)ygneatter
(GM) and cerebrospinal fluid spaces (CSF). Many ienag
processing technologies have been used to copyméttical
images; especially image segmentation technologid®
image segmentation is the process to split image ttaa
serial of non-overlapping homogeneous region. & baen
used to analyze medical images for facilitatinggdizsis and
therapy. In addition, it can be used to reconstiutge,
where it is useful to identify the abnormality metbrain. For
the brain MRI, the image segmentation techniques are
essential for clinic diagnosis, as they are usedassify WM,

GM and CSF regions from observed image. The physcia
can determine abnormality in the patient brain frtmse
regions.

Clustering is one of the image segmentation teclasiqu
Clustering is the process of classifying data intoug of

V Nagaveni
Assistant Professor
Dept of CSE
Acharya Institute of Technology
Bengaluru, Karnataka, India

nagaveni@acharya.ac.in

similarity. Some of clustering algorithms have been
commonly adopted in computer, engineering and nnadities
field. Similarly, the clustering algorithms havesal been
extended to medical fields. Clustering algorithmshsas K-
means (KM) clustering, Moving K-means (MKM) and Byz
C-means, have been proposed to make the analydiseof
brain MRI easier. Fuzzy C-means (FCM) algorithm [4kh
been proved to achieve the better segmentatiociexfy
over the other clustering approaches. But the drekvimd
these clustering algorithms is the huge computatidime
required for convergence. In recent years, manyh hig
performance hardware and software technologies baea
released, such as Intel and AMD multi-core systegraphic
processing units (GPU), OpenMP, OpenCL, CUDA and
Hadoop. In these new technologies, the developwieGPU

is rapidly growing, and it has been used to acadéder
computation-consuming applications. The GPU devices
consist of up to hundreds cores per-chip, andrntissue the
thousands of threads to fully utilize its compuwiatl power.
GPU is not only adopted to develop graphic appbcabut
also utilized to solve general computing problemheT
General-Purpose computing on Graphics Processinigs Un
(GPGPU) such as Open Computing Language (OpenCH) an
compute unified device architecture (CUDA), has
successfully made supercomputing available to waraf
applications. NVIDIA’'s new Kepler GK110 GPU raisti®e
parallel computing bar considerably and will hetgve the
world’s most difficult computing problems. By efing
much higher processing power than the prior GPlegsion
and by providing new methods to optimize and ineeea
parallel workload execution on the GPU, 2.Kepler 1GK -
Extreme Performance, Extreme Efficiency Comprising 7
billion transistors, Kepler GK110 is not only thasfest, but
also the most architecturally complex microprocesseer
built. Adding many new innovative features focused
compute performance, GK110 was designed to be allglar
processing powerhouse for Tesla® and the HPC market.
Kepler GK110 will provide over 1 TFlop of doubleegision
throughput with greater than 80% DGEMM efficienagrsus
60-65% on the prior Fermi architecture. In addititm
greatly improved performance, the Kepler architertoffers

a huge leap forward in power efficiency, deliverimg to 3x
the performance per watt of Fermi. The followingwne
features in Kepler GK110 enable increased GPUzatibin,
simplify parallel program design, and aid in theldgment of
GPUs across the spectrum of compute environmenting
from personal workstations to supercomputers. .

www.ijcrd.com

Page 701

International Journal of Combined Research & Develpment (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: Bune-2016

I RELATED WORK

1.THE QUADRO FX 5600 GRAPHICS CARD

The Quadro FX 5600 is a graphics card equipped avi@B80
graphics processing unit (GPU). The Quadro hasge Iset of
processor cores that can directly address a gloteathory.
This architecture supports the single instructionitiple-data
(SIMD) programming model, which is more general and
flexible than the programming models supported ®vipus
generations of GPUs, and which allows developersasily
implement data-parallel algorithms. In this secties discuss
NVIDIA's Compute United Device Architecture (CUDA)dnN
the architectural features of the G80 that are melst/ant to
accelerating MRI reconstructions. More complete dpsons
are found in from the application developer's pectpe, the
CUDA programming model consists of ANSI C supportgd b
several keywords and constructs. CUDA treats the @G®d
coprocessor that executes data-parallel kerneltibmse The
developer supplies a single source program encasimgas
both host (CPU) and kernel (GPU) code. NVIDIA's gilar,
nvcc, separates the host and kernel codes, whighthen
compiled by the host compiler and nvcc, respedgtivéhe
host code transfers data to and from the GPU'saglmemory
via API calls, and initiates the kernel code byliogl a
function.

G880 GPU

EM1E

|SM 2
Sh 1
[Shared Memory | 0
&

Reqgister File

ce 0
Fw F -
[Constant Cache

S SFU 2

[Texture Cache |
ry

v I"F
1.5 GB Of-Chip (Global, Constant, Texture) Memories

Figurel Architecture of Quadro FX 5600

Figure 1 depicts the Quadro’s architecture. The G30U
consists of 16 streaming multiprocessors (SMs), heac
containing eight streaming processors (SPs), ocgxsnr
cores, running at 1.35 GHz. Each SM has 8,192 texgishat
are shared among all threads assigned to the S¥thfeads

on a given SM's cores execute in SIMD (single-ucdton,
multiple-data) fashion, with the instruction unitobhdcasting
the current instruction to the eight cores. Eachedoas a
single arithmetic unit that performs single-premisifloating
point arithmetic and 32-bit integer operations. #iddally,
each SM has two special functional units (SFUs)jctwh
perform more complex FP operations such as the
trigonometric functions with low latency. Both thetlametic
units and the SFUs are fully pipelined. Thus, e&88h can
perform 18 FLOPS per clock cycle (one multiply-add
operation per SP and one complex operation per SFU)
yielding 388.8 GFLOPS (16 SM * 18 FLOP/SM * 1.35 gH

of peak theoretical performance for the GPU. Thada has
76.8 GB/s of bandwidth to its 1.5 GB, o_- chip, glloba
memory. Nevertheless, with computational resources
supporting nearly 400 GFLOPS and each multiply add
instruction operating on up to 16 bytes of datgliaptions

can easily saturate that bandwidth. Therefore, egécted in
Figure 2, the G80 has several on-chip memories that
exploit data locality and data sharing to reduce an
application's demands for o_-chip memory bandwidtbr
example, the Quadro has a 64 KB, o_-chip constantang
and each SM has an 8 KB constant memory cache.uBeca
the cache is single-ported, simultaneous acceskebreaxt
addresses yield stalls. However, when multipleatiseaccess
the same address during the same cycle, the caochddasts
that address's value to those threads with the &terecy as a
register access. This feature proves beneficiattfe MRI
reconstruction algorithm. In addition to the constaemory
cache, each SM has a 16KB shared memory for datastha
either written and reused or shared among thréaaally, for
read-only data that is shared by many threads mit n
necessarily accessed simultaneously by all thretds,o -
chip texture memory and the on-chip texture caahgsoit
2D data locality to substantially reduce memoryetat.
Threads executing on the G80 are organized intoege tievel
hierarchy. At the highest level, each kernel createsingle
grid, which consists of many thread blocks. The imaxn
number of threads per block is 512. Each threadkbis
assigned to a single SM for the duration of itscexien.
Threads in the same block can share data througkhtared
memory and can perform barrier synchronizationrtwpking
the sync threads primitive. Threads are otherwise
independent, and synchronization across threadk®lds
safely accomplished by terminating the kernel. Hna
threads within a block are organized into warp8athreads.
Each warp executes in SIMD fashion, with the SM's
instruction unit broadcasting the same instructmihe eight
cores on four consecutive clock cycles. SMs caarlgdave
warps on an instruction-by-instruction basis to ehithe
latency of global memory accesses and long latency
arithmetic operations. When one warp stalls, the &h
quickly switch to a ready warp in the same threladlbor in
some other thread block assigned to the SM. Thesg&ills
only if there are no warps with all operands avd#aTuning
the performance of a CUDA kernel often involves a
fundamental trade-o_ between the efficiency of vithlial
threads and the thread-level parallelism (TLP) agnai
threads. This trade-o_ exists because many optimizathat
improve the performance of an individual threaddten
increase the thread's use of limited resourcesateshared
among all threads assigned to an SM. For exampleaah
thread's register usage increases, the total nuofbireads
that can simultaneously occupy the SM decreasesauBec
threads are assigned to an SM not individually, ibutarge
thread blocks, a small increase in register usagecause a
correspondingly much larger decrease in SM occupanc

2 KEPLER GK110GPU ARCHITECTURE

NVIDIA’s new Kepler GK110 GPU raisestparallel
computing bar considerably and will help solve therld’s
most difficult computing problems. By offering nfubigher
processing power than the prior GPU generation apd
providing new methods to optimize and increase ljghra
workload execution on the GPU, 2.Kepler GK11Bxtreme
Performance, Extreme Efficiency Comprising 7.1 billi
transistors, Kepler GK110 is not only the fastést, also the
most architecturally complex microprocessor everilt.bu
Adding many new innovative features focused on agmp
performance, GK110 was designed to be a parakslgssing

www.ijcrd.com

Page 702

International Journal of Combined Research & Develpment (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: Bune-2016

powerhouse for Tesla® and the HPC market. Kepler 18K1
will provide over 1 TFlop of double precision thghput with
greater than 80% DGEMM efficiency versus-@ on the
prior Fermi architecture. In addition to greatlgngroved
performance, the Kepler architecture offers a hiegp
forward in power efficiency, delivering up to 3x eth
performance per watt of Fermi. The following newtieges in
Kepler GK110 enable increased GPU utilization, difyip
parallel program design, and aid in the deployntdnEPUs
across the spectrum of compute environments ranfgorg
personal workstations to supercomputers:

Dynamic Parallelism — adds the capability for the GPU to
generate new work for itself, synchronize on resuéind
control the scheduling of that work via dedicatec;elerated
hardware paths, all without involving the CPU. Bywding
the flexibility to adapt to the amount and formpafrallelism
through the course of a program's execution, progrars can
expose more varied kinds of parallel work and mthleemost
efficient use the GPU as a computation evolves.s Thi
capability allows less structured, more compleXsa® run
easily and effectively, enabling larger portions ah
application to run entirely on the GPU. In additignograms
are easier to create, and the CPU is freed for taisks.

Hyper-Q — Hyper-Q enables multiple CPU cores to launch
work on a single GPU simultaneously, thereby draoaby
increasing GPU utilization and significantly redugi CPU
idle times. Hyper -Q increases the total numberooinections
(work queues) between the host and the GK110 GPU by
allowing 32 simultaneous, hardware managed corometi
(compared to the single connection available witrnit).
Hyper-Q is a flexible solution that allows separate
connections from multiple CUDA streams, from mukipl
Message Passing Interface (MPI) processes, or &osn
multiple threads within a process. Applicationst fri@viously
encountered false serialization across tasks, ligelimiting
achieved GPU utilization, can see up to dramatifopmance
increase without changing any existing code.

Grid Management Unit — Enabling Dynamic Parallelism
requires an advanced, flexible grid managementdcishtch
control system. The new GK110 Grid Management Unit
(GMU) manages and prioritizes grids to be executedhe
GPU. The GMU can pause the dispatch of new grids an
queue pending and suspended grids until they a@yréo
execute, providing the flexibility to enable powsdrfuntimes,
such as Dynamic Parallelism. The GMU ensures both
CPU and GPU generated workloads are properly managed
and dispatched.

NVIDIA GPUDirect™ — NVIDIA GPUDirect™ is a
capability that enables GPUs within a single corapubr
GPUs in different servers located across a networHjrectly
exchange data without needing to go to CPU/systemane
The RDMA feature in GPUDirect allows third party dms
such as SSDs, NICs, and IB adapters to directly acces
memory on multiple GPUs within the same system,
significantly decreasing the latency of MPI send aeceive
messages to/from GPU memory. It also reduces desnand
system memory bandwidth and frees the GPU DMA argin
for use by other CUDA tasks. Kepler GK110 also sufgpo
other GPUDirect features including Peer to Peer and
GPUDirect for Video.

Macintosh, use the font named Times. Right margiuld
be justified, not ragged.

PCI Express 3.0 Host interface

Figure 2 Overview of GK110/ Kepler architecture

An Overview of the GK110 Kepler Architecture Kepler
GK110 was built first and foremost for Tesla, atedgoal was
to be the highest performing parallel computing
microprocessor in the world. GK110 not only greakgceeds
the raw compute horsepower delivered by Fermi,itbdbes
so efficiently, consuming significantly less powemnd
generating much less heat output. A full Kepler G&1
implementation includes 15 SMX units and six 64rb@mory
controllers. Different products will use different
configurations of GK110. For example, some prosiunay
deploy 13 or 14 SMXs. Key features of the architee that
will be discussed below in more depth include:

1. The new SMX processor architecture

2. An enhanced memory subsystem, offering additiona
caching capabilities, more bandwidth at each leselthe
hierarchy, and a fully redesigned and substantifdister
DRAM /O implementation.

3. Hardware support throughout the design to enakls
programming model capabilities.

PERFORMANCE PER WATT -A principal design goal for
the Kepler architecture was improving power efficg.
When designing Kepler, NVIDIA engineers applied
everything learned from Fermi to better optimize tkepler
architecture for highly efficient operation. TSMCZ8nm
manufacturing process plays an important role iwveling
power consumption, but many GPU architecture
modifications were required to further reduce power
consumption while maintaining great performanceerk
hardware unit in Kepler was designed and scrubbgadvide
outstanding performance per watt.

2.1 Streaming Multiprocessor
Architecture

(SMX)

Streaming Multiprocessor (SMX) Architecture Kepler
GK110's new SMX introduces several architectural
innovations that make it not only the most powerful
multiprocessor we've built, but also the most peasgmable
and power efficient. SMX: 192 single precision CAID
cores, 64 double precision units, 32 special famctinits

www.ijcrd.com

Page 703

H
3
°
2
:

International Journal of Combined Research & Develpment (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: Bune-2016

(SFU), and 32 load/store units (LD/ST). SMX Proasss
Core Architecture Each of the Kepler GK110 SMX units
feature 192 single-precision CUDA cores, and each bas
fully pipelined floating-point and integer arithrieetlogic
units. Kepler retains the full IEEE 754/2008 corapti
single and double precision arithmetic introducedFermi,
including the fused multiply add (FMA) operationn®of the
design goals for the Kepler GK110 SMX was to sigaifitly
increase the GPU’s delivered double precision perdmce,
since double precision arithmetic is at the hefrhany HPC
applications. Kepler GK110's SMX also retains tlpedal
function units (SFUs) for fast approximate transtmnal
operations as in previous-generation GPUs, progidin the
number of SFUs of the Fermi GF110 SM. Similar to16K&
SMX units, the cores within the new GK110 SMX unitse
the primary GPU clock rather than the 2x shadeskcl®ecall
the 2x shader clock was introduced in the G80
Teslaarchitecture GPU and used in all subsequent Taslé
Fermiarchitecture GPUs. Running execution units at adrigh
clock rate allows a chip to achieve a given tatbebughput
with fewer copies of the execution units, whictessentially
an area optimization, but the clocking logic foe tfaster
cores is more powdrungry.

Figure 3 Streaming Multiprocessor (Smx) Architeetur

I PROPOSED ALGORITHM

¢ Fuzzy C Means algorithm: This algorithm works
by assigning membership to each data point

Where,

corresponding to each cluster center on the bésis o
distance between the cluster center and the data
point. More the data is near to the cluster center
more is its membership towards the particular

cluster center. Clearly, summation of membership

of each data point should be equal to one. After

each iteration membership cluster centers are
updated according to the formula:

g =11 (dy | dir)®" D

k=1

'n' is the number of data points

vj' represents th&'jcluster center.

'm' is the fuzziness index m €4,

'c' represents the number of cluster center.
'Wij' represents the membership Btiata

to j cluster center.

'dij' represents the Euclidean distance
betweenf' data and'j cluster center.

Main objective of fuzzy c-means algorithm is to miize:

JU =33)" o~
i=1 j=1
where,

'|lx-v||' is the Euclidean distance betwebBrdata
and" cluster center.

ALGORITHMIC STEPS FOR FUzZzZY C-MEANS
CLUSTERING

Let X = {Xy, X, X3 ..., %} be the set of data points and V =
{V1, Vo, V3 ..., i} be the set of centers.

1) Randomly select’ cluster centers.

2) calculate the fuzzy membershig' using:

iy
ﬂU = 1/' Z (dxj l/ dl'rrc)(Z'!m_l)
=1
3) compute the fuzzy centéxg using:

4) Repeat step 2) and 3) until the minimiuhvalue is

achieved ofju®V. ¥y <p.
where,
‘kis the iteration step.
‘' is the termination criterion between [0, 1].
‘U = (Lo~ is the fuzzy membership matrix.
J' is the objective function.
ADVANTAGES

1) Gives best result for overlapped data set antheoatively
better then k-means algorithm.

2) Unlike k-means where data point must exclusibaipng
to one cluster center here data point is assigrexdbarship
to each cluster center as a result of which daitat paay
belong to more than one cluster centers.

DISADVANTAGES

1) Apriori specification of the number of clusters.
2) With lower value offf we get the better result but
at the expense of more number of iteration.
3) Euclidean distance measures can unequally
weight underlying factors

www.ijcrd.com

Page 704

International Journal of Combined Research & Develpment (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: Bune-2016

IV FLOW OF GPU-BASED FCM
CLUSTERING

Image

| Cluster
conversion

Setting

| Initialie
FOM()

3

Distance New
(alculatio = Center

Image

| Optimization
Qutput

Checking

Membership | | Objechive
Updating Function

n Selection

/

Figure 4 The process diagram of the proposed dfgori

The kernel FCM part (gray box) is re-designed for
execution on GPU as shown in Figure 3.. It includes
following 9 steps:

1. Image Conversion

This step is to cover the original brain MRI to Gegle
image. Usually the format of the covered graysaakgge

is 8-bit. The input image is transferred into aygsaale
image that all the value of pixels are betweendBn

2. Cluster Setting

This step is to set the number of clusters. Thestetu
numberc is determined in FCM. The proper is the key to
obtain the good result of FCM algorithm. In genecak
unknown, andc = {1, 2... n}. For the segmentation of
brain MRI,cis set to 2.

3. FCM Initializing

This step is to select the initial center of clustgpically,
the performance of FCM depends on the initial cluste
center and/or the initial membership matrix. If iaftial
cluster center that is close to the actual finastr center,
then FCM will converge in short.

4. New Center Selection
This step is to select the new centers of the etast
This step is implemented in GPU. Each thread is
response to calculate an element.ofhe pseudo
code is shown in Figure 5.

f* mf Matrix arter exponential mcdilication
center matriv sbnres the center of each
cluster:

md 13 @ distance mAtrix rfor storing or *
data:

data i1s image datz (cach pixel betwocon 0-1)
U is Lle updale melrix;

Cluster n is the number of centers in
cluster:

Lid is Lhread id (GPU Lhread) beloay Lo
img.x * img.y:

data is the piwel matrix of the inmput image:

Figure 5 The pseudo code of step of the selectiorew

center

5. Distance Calculation

The distance between a data point and the clustgtercin
this stepd is calculated in this step. The thread i calculates
(xi, j), j Z{1, 2}. The pseudo code is shown in Figure 6.

f* dist matrix stores the distance between each
data point to center

*

tid = g

=t the thread id
n de
(center (tid) —data)

End

Figure 6 .The pseudo code of step of calculatiodistince
between center and a data point

6. Objective Function Calculation

This step is to calculate the objective value byediive
function; the distance matrix is recalculated onUGR this
step. The objective valukis calculated by CPU. The pseudo
code is shown in Figure 7.

/% obj fnc is the sum of the dist matrix */
// get the thread id

for 1 := 1 to cluster_n do

dist(tid,i)= dist(tid,i)*mf(tid, i)
End
f* Obj fnc is calculated by CPO*/S
Obj_fnc=sum(dist)

Figure 7.The pseudo code of step of objective value

7. Membership Updating

This step is to calculate the new membership matfor next
iteration, and this step is performed on GPU. Téeupo code
is shown in Figure 8.

www.ijcrd.com Page 705

International Journal of Combined Research & Develpment (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: Bune-2016

/* T new is new U matrix used to replace U for
the next iteration

*f
tid = get_thread id // get the thread id
or 1 := 1 to cluster_n do
tnp (tid, i) = pow(dist(tid,i),-2/ (exponsnt-1))
End

//fcalculate new

or 1 =1t

End

Figure 8. The pseudo code of step of nemvembership
matrix

8. Optimization Checking

This step is to check whether the objective fumrctis
converged or not. IfJfnIdm-1 ¢, then FCM stopsl] is a
small positive constant.

9 Image output

The final value is calculated in the steps abovés Value is
utilized to verify the color of the pixels. If th@lue of a pixel
is greater the final value of center, it is blaakd vice versa.
Final image is converted to binary image with blackl white

color of pixels

V IMPLEMENTATION USING
OPENACC

OpenACC directives are the fast, simple and portalalg to
accelerate your scientific code. With OpenACC, yosert
compiler hints — in the form of OpenMP-like direets into
the compute-intensive portions of even the largesbst
complex FORTRAN or C application, and the compiler
automatically maps that code to an acceleratorcludiing
NVIDIA GPUs for higher performance. (OpenACC is fully

compatible and interoperates with OpenMP and MPI.)

OpenACC compilers are:

e Portable: Future-proof your codes with this open
Standard

e Fast: Straight forward, high-level, compiler driven
Approach to parallel computing

e Powerful: Ideal for accelerating large, legacy Faort
Or C codes

2X IN 5 STEPS
Most developers who try OpenACC see speedups of Zrtan
10X, following five key steps:

Evaluate and plan

Add parallel directives

Add data movement directives
Tune data movement

a ks wbdPR

Optimize parallel scheduling

VI EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this work, the proposed GPU based FCM algoritam i
implemented on two different NVIDIA GPU devices,chu

as NVIDIA KEPLER GK110 with 192 single precision
CUDA cores and 64 bit memory controller, and NVIDIA
Quadro FX5600. The hosts (CPU) are Intel Xeon E3012
3.30GHz and Intel Xeon E3-1231 v3 3.40GHz with 64GB
RAM, respectively. The CUDA version is 6.5. The input
brain MRIs are download from the brain web datasets

Figure 9 shows the input images and Figure 10wsho
the processed images. The experimental results sshioat
the proposed algorithm can obtain the same quagylts as
original FCM, and it can achieve significant spegdover
the original FCM executed on very powerful CPU. The
comparison of the performance between the propased
based FCM algorithm and traditional FCM is show iml€a
1. The Cost/Performance (CP) ratio shows that thpgzed
algorithm is valuable for analysis of MR brain image

Table 1.Comparison OF Results obtained using
Sequential,Parallel GPU(Quadro andKepler) Architess

CPU CPU GPU GPU

Intel Intel NVIDIA NVIDIA

Kepler

o~ o | ~viin
MRIla and b 17.57 15.0 11.26 9.6

(1280*801)

MRI2(512*512) 4.89 434 3.56 3.0

MRI3(1150*1280) 25.18 23.89 16.92 15.6
MRI4(512*512) 5.08 5.03 3.52 3.1
MRI5(512*512) 5.13 4.48 341 3.0

www.ijcrd.com

Page 706

International Journal of Combined Research & Develpment (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: Bune-2016

MRI2 MRI3

MPRIS MRI6

Figure 9 The original brain MR image Figure 10 The processed brain mr image by GPU baised
FCM algorithm

VIl .CONCLUSION

Fuzzy C- Means algorithm gives best result for
overlapped data set and comparatively better thamedns
algorithm. Unlike k-means where data point mustiesigely
belong to one cluster center here data point isgreas
membership to each cluster center as a result afhwitata
point may belong to more than one cluster center. the
segmentation of brain MRI, FCM is a commonly used an
efficient algorithm. However, it is computationalfsuming
algorithm. A Parallel FCM algorithm based on GPU to
enhance the computation performance. The signifispaed-
ups using their new PGI compiled software OpenACGhen
NVIDIA GPU. 2.Kepler GK110- Extreme Performance,
Extreme Efficiency Comprising 7.1 billion transistpKepler

www.ijcrd.com Page 707

International Journal of Combined Research & Develpment (IJCRD)
elSSN:2321-225X;pISSN:2321-2241 Volume: 5; Issue: Bune-2016

GK110 is not only the fastest, but also the mostigecturally
complex microprocessor ever built. Kepler GK110 | wil
provide over 1 TFlop of double precision throughpyith
greater than 80% DGEMM efficiency versus-@ on the
prior Fermi architecture. In addition to greattyproved
performance, the Kepler architecture offers a hiegp
forward in power efficiency, delivering up to 3xeth
performance per watt of Fermi.

VIl REFERENCES

[1]2015 NVIDIA Corporation, UNIVERSITY OF ILLINOIS,
"Accelerating
Biomedical Imaging”

[2]Che-Lun Hung, Yuan-Huai Wu, Yaw-Ling Lin, Yu-Chen
Hu, Jieh-Shan Yeh, Chia-Chen Lin " GPU -based Fuzzy C
Means Clustering Model For Brain MR Image” Proc. loé t
Third Intl. Conf. Advances in Computing, Communicatio
and Information Technology- CCIT 2015

[3]Whitepaper ,NVIDIA’'s Next Generation CUDATM
Compute Architecture: Kepler TM GK110

[4] M. Rakesh, amd T. Ravi, "Image Segmentation and
Detection of

Tumor Objects in MR Brain Images Using Fuzzy C-means
(FCM)

Algorithm," International Journal of engineering Baxch and
application,vol.2,2012.pp.2088-2094.

[5]NCBIhttps://en.wikipedia.org/.../National_Centerr f8iot
echnology_Information.

www.ijcrd.com Page 708

