International Journals of Combined Research & Dywalent
elSSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,J@04.6

Clustering With An Auto-Indexing for Tuning Databases

KAVITHA SN JINCY C MATHEW BINOJ M
Assistant Professor Assistant Professor Assistant Fyside
Department of MCA Department of MCA Department o€K
New Horizon College New Horizon College New Horizon (ege
Of Engineering Of Engineering Of Engineering
Bengaluru — 560103 Bengaluru — 560103 Bengalu66103
Karnataka Karnataka Karnataka

Abstract : In opinion of the wide association of

databases and its size, mainly in data warehouses,
important to systematize the physical design so ttha
task of the database administrator (DBA) is mingdizA
vital part of physical database design is indexestbn.

An auto-index selection tool capable of exploriaggé
amounts of data and suggesting a good set of irsdfexe

a database is the goal of auto-administration. @sg

is a data mining technique with broad request and
usefulness in exploratory data analysis. This idea
provides a motivation to apply clustering technigjue
obtain good indexes for a workload in the databdse.
this paper we describe a technique for using chirsge
auto-indexing. The experiments showed that the
proposed technique performs better than MicrosQft S
Server Index Selection Tool and can suggest indexes
faster than Microsoft’s IST.

Keywords: DBA, Auto | ndexing

1. Introduction

Given a relational database system and a worklbad o
queries that signifies a sample of transactionsedara
database, the Index Selection Problem (ISP) camtain
selecting a set of index configurations for eadbietaso
that the cost for processing the workload is minimu
subject to a edge on the total index space [2]ceSal
indexes have a preservation cost during updatertios
and deletion, we cannot indefinitely increase thember
of indexes on a database table. The Index Selection
Problem has been approached differently by diverse
researchers to build Index Selection Problem. We ca
classify tools that address the Index Selectioiblérn

based on their approach in two ways. The first
category is external tools which use linear progréng
optimization techniques and other cost minimization

techniques to resolve the Index Selection Prob&jm [
Some external tools have also used data mining
techniques to solve the Index Selection ProblemThg
second category is the tools that consume the query
optimizer to give cost estimates for various index
structures and suggest a structure with the least ¢
estimation. [2], [3].

A disadvantage with the first category is that tibe!
is detached from the optimizer. This means thakethe
could be some indexes suggested by the tool whieh a
not used by the optimizer while handling the wosklo
The presence of such indexes will be an overheath@n
DBMS [2].. A second drawback is that these tooks ar
based on the current knowledge of the strategy bged
the optimizer and will become outdated as the dgtm
changes.

The second approach has the advantage that all
indexes are chosen by the optimizer and will bel use
the optimizer while handling the workload [3]. Hovee,
this approach requires many optimizer calls because
many possible index configurations have to be eatell
by the optimizer. This means higher index suggastio
time and longer processing time for other apploati
using the DBMS when indexes are being suggested.

The idea behind our research is to chain the two
approaches so that the major part of the solutiothé
Index Selection Problem is done externally and aks®
the optimizer to choose the final set of indexesour
technique the optimizer is invoked only once foclea
guery in the workload to choose the final set afeixes
from a set of externally resolute index configwras.
Also most of the existing external tools addres$y on

www.ijcrd.com

Page 848

International Journals of Combined Research & Dywalent
elSSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,J@04.6

single column and non-clustered indexes. Our t@d h
the capacity to suggest a set of single-columnrauiti-
column indexes as well as clustered and non-clegter
indexes. We refer to [4] for the definition of tlkes
terminologies.

The repose of the paper is organized as follows. In
Section 2 we describe our index selection technitjue
Section 3 we describe re-indexing. In Sections d an
we discuss our research and results, respectively.
Section 6 we discuss conclusions and future work

2. Proposed Index Selection Technique

Our suggested technique is based on the perception
that the attributes that occur more frequently and
frequently in a group of similar queries are likétybe
useful for indexing[2] [4]. Based on this idea wegp
queries which are similar in terms of their use of
attributes. Attributes which are accessed by a# th
gueries in each group are mined as indexes. These
indexes can be single-column or multi-column indexe
For multi-column indexes, the order of the colunisis
firm by assigning weights to attributes based omtiver
they are used in a search argument, join claus© @R
BY/ORDER BY clause or aggregate function. A
clustered index is also chosen by assigning weights
the attributes liable on whether they occur in Eng
queries, join clause or GROUP BY/ORDER BY clause.
A detailed clarification is given in Section 2.1hdse
indexes which are extracted are then submittechéo t
query optimizer for final selection for the given
workload. The indexes not selected by the optimazer
eliminated. The remaining indexes are the finakkeb
suggested by our tool.

‘ Wo rklo ad, d atab ase ‘

information

Id entifyin,‘ can d id ate in|d

jxes Externalto ¥

heO

‘ Clu sterin g ptimi

zel

3

Candidate indexsugag estio ‘

n an d creation

Y

‘ Queryoptimizer ind ‘

ex elimin ation

Figure 1

The phases of the proposed auto-indexing technique

Figure 1. shows the many phases of our method. In
Section 2.1 we describe the identifying candidatiekes
phase where we citation candidate indexable ataghu
classify the ordering of multi-column indexes and
identify clustered and non-clustered indexes. IntiSe
2.2 we describe the clustering phase where quiedssd
on attributes are grouped together. In Section \2e3
discuss the candidate index proposal and creatiasey
and in Section 2.4 we deliberate the query optimize
index elimination phase.

2.1 | dentifying candidate indexes

During this stage a workload of queries is in use a
input, indexable attributes are removed and a query
attribute matrix [1] is created. While extractimglexable
attributes we also consider columns in collective
functions such as MIN, MAX, SUM, AVG and COUNT
as indexable attributes because non clustered ésdean
also be created on columns existing in aggregate
functions [4].

In a query-attribute matrix the occurrence of an
indexable attribute in a query is showed by a 1 and
absence by a 0 [1]. An example of a query-attribute
matrix is shown in Figure 2. Let columns A and Bolog
to a table named T1 having 20 rows and C, D and E
belong to a table named T2 having 15 rows in Figure

Querie! Indexable attribute
T1.A T1.B T2.C T2.D T2.E
Q1 1 0 1 1 0
Q2 0 1 1 0 1
Q3 1 1 1 0 1
Q4 0 1 0 0 1
Q5 1 1 1 0 1

Figure 2. Query-attribute matrix [1]

A query-frequency matrix is created during this ggha

to extract aspirant indexable attributes if their
frequenciesKreq) satisfy equation (1).
Freq> threshold1OR Freq* T > threshold: (N

In equation (1) Freq is the frequency of each
indexable attribute in the workload afdis relative to
the size of the table in rows to which the colunuegy
threshold1lremoves the attributes that do not occur very
regularly in the workload anthreshold2eliminates the
attributes that do not belong to large tables eixtepy

www.ijcrd.com

Page 850

International Journals of Combined Research & Dywalent
elSSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,J@04.6

occur very frequently. Both the threshold values ar
mechanically added by the tool and can also beligapp
by the user of the tool.

An example of a query-frequency matrix is shown in
Figure 3. In a query-frequency matrix the 0’s araldf
query-attribute matrix are replaced by the freqyeoic
the attributes happening in the query. tletesholdlbe
5 andthreshold2be 100 then the candidate indexable
attributes are T1.B, T2.C and T2.E in Figure 3. The
attributes A and E are removed from the queryiaitd
zmatrix. It is worth mentioning here that the fregay
of a query in the workload is automatically takemecof
by our technique. If a query appears many times in
workload, its corresponding attributes will occuamy
times in the query frequency matrix. As a resuk th
chance of these attributes being selected up atidzda
indexes increases.

Querie: Indexable attribute
T1.A T1.B T2.C T2.D T2.E

Q1 2 0 1 3 0
Q2 0 1 2 0 1
Q3 1 1 3 0 1
Q4 0 2 0 0 3
Q5 1 4 2 0 2
Freq 4 10 9 3 8
Freq* T 80 20C 13t 45 12C

Figure 3. Query-frequency matrix
Orderingthe columns constructed on our instinct that
those columns occurring in a WHERE clause should be
given higher priority to be chosen as an index timse
columns which occur in GROUP BY or ORDER BY
clauses and the least importance should be given to
columns occurring in aggregate functions. Accordiong
the priorities, weights of 3, 2 and 1 are giventhe
columns occurring in a WHERE clause, GROUP BY or
ORDER BY clauses and aggregate functions,
respectively[5]. The total weight of an attribute the
workload is found and the attributes are ordered in
downward order of weight from left to right in theery-
attribute matrix. The attributes stirring with high
frequency query will have more weight and evenjuall
will be placed on the left.

The selection of clustered indexes is also donagur
this phase. Though clustered indexes cause an eagtrh
they are also helpful to certain queries. We chdose
create single-column clustered indexes in ordeednice
overhead. Since clustered indexes should be created
columns happening frequently in range queries 8&Ras
more weight for range queries and the same weight f
join clause and GROUP BY or ORDER BY clausElse
total weight of attributes in the workload is fouadd a

higher rank is assigned to an attribute with a éigh
weight. We make the clustered indexes as seleetive
possible by also considering the rank of attributes
according to selectivity. The higher the discrintioa of

an index, the higher is the possibility of the indeing
chosen by the optimizer to execute a query [4]s@ed
indexes are automatically created on primary key
columns and for a primary key column selectivity is
equal to 1. Therefore columns with selectivity ddoal

are not considered for clustered index howevelr tre
considered for non-clustered index. The sum ofrémk
with discernment and rank with weights is calculate
The column with the highest sum for each tablehizsen

as the clustered index for that table. If two orreno
columns have the same sum then the column with a
higher weight rank is chosen. This is becausebatts
occurring in range queries and having duplicateiesl
should be given more importance than columns with
higher selectivity.

2.2 Clustering

Output of the identifying candidate index phasthe
guery attribute-matrix containing the ordered
candidate indexable attributes. This query-attabut
matrix is the input for the clustering phase. Ouaais to
group queries in a workload based on common atg#u
occurring in the query using the query attributeriman
Figure 2. During the clustering phase queries trat
similar based on common and frequently occurring
attributes are clustered together. A possible ehugg
result from Figure 2 is [Q1], [Q2, and Q4] and [Q3]

2.3 Candidateindex suggestion

During this phase, those candidate indexable
attributes which are mutual to all the queries teltesd
together during the clustering phase are suggeased
indexes. For example from Figure 2, the suggestee
configuration will be the index [T2.C, T2.D] forudter
[@1], indexes [T1.B] and [T2.C] for cluster [Q3, [&nd
index [T1.B] for cluster [Q2, Q4]. Note that attifes
T1.A and T2.E are not candidate indexable attriaute
The order in the query-attribute matrix is maingain
while creating multi-column indexes. These suggekste
indexes are then existing to the optimizer for Ifina
selection.

2.4 Query optimizer index elimination

www.ijcrd.com

Page 851

International Journals of Combined Research & Dywalent
elSSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,J@04.6

Our idea behind this phase is the presence of an
optimizer capable of choosing from a set of virtoal
theoretical indexes that outputs its choice andt cos
estimate for each query [7]. The optimizer uses its
statistics and cost estimations to choose indexesdch
query. In the absence of an optimizer which is bipaf
choosing from a virtual set of indexes in SQL Semwe
actually create indexes suggested from SectionThi&n
we invoke the optimizer to find out the indexesreated
to be used to execute the workload[8]. Those inslex
being picked up by the optimizer are released ksxau
the presence of these unused indexes will cause an
overhead of space and conservation in the database.
remaining indexes in the database are the finatxesl
suggested by our technique.

3. Re-Indexing

hich are part of new but not part of existing se¢ a
created, those which are part of existing set astdim
new set are dropped and those which interconnect
remain[9]. The process of dropping and creatingxed

in the system follows similar methodology as Oracle
Automated Index-Rebuild System [12] which can be
done either online or offline.

4. Experiments

We have conducted experiments on Microsoft SQL
Server 2000 [4] using the decision support TPC-R
benchmark [9]. We have created TPC-R’s 1 GB databas
and have used 22 read-only queries from the berméhma
to create a workload of 240 query cases[11]. The 22
read-only benchmark queries are exponentially
distributed in the workload.

Our experiments use tHeMeans [5], [6] clustering
algorithms. Thek-Means clustering algorithm accepts a
parametelk from the user which is the final number of
clusters for a group of observations. It is a well-
established clustering algorithm and has been used
successfully in many applications. KEROUAC is a
categorical data clustering algorithm and the final
number of clusters is mechanically found in this
algorithm. KEROUAC also accepts a parameter froen th
user known as the granularity factor which deteesin
the degree of dissimilarity among clusteBoth these
clustering algorithms have low computational castsl
are advantageous to us to reduce the index suggesti
time.

We compare the performance of our technique with
the baseline case where no indexes are createdlbasv
with the Frequent Item sets Mining technique [1hisT
technique uses the Close algorithm [11] to extract
maximal set of items (attributes) that are comnwoa set
of transactions and their support. Those item sets
satisfying a minimum support are advised as indexes
The measure for comparison that we use is the geera
guery response time in minutes. We also compare our
technique with Microsoft SQL Server’'s IST using its
thorough tuning feature and no limitations on wos&d
size and available disk space.

5. Experiment results

All our experiments are conducted on the systeml Int
Pentium 4-M, CPU 2.0GHz, 512 MB RAM. The results
of the experiments conducted witk-Means and
KEROUAC are shown in Figures 4 and 5, respectively.
In Figure 4 the number of clustetss depicted on the-
axis, and the average query response time on-thés.

In Figure 5 the value of is showed on thaxis and the
average query response time on thaxis. In [1] it is
reported that using the 22 read-only queries of -RPC
benchmark, the performance improvement of the
frequent item sets mining technique when compaiigid w
the case of no indexes is from 15% to 25%. In Egut
and 5 the performance improvement of 25% for [1] is
shown with a straight line. Both the figures alkow the
average query response time when no indexes aserire
and when SQL Server's recommended indexes are
present in the database.

While performing experiments we observed that the
average query response time varies with the choice
threshold values and that the choice of the thidsho
values should be such that a extensive number of
indexable attributes are eliminated but not manye W
experimented with different values fohresholdland
threshold2 The performance is best whémwesholdlis
kept close to 50% of the size of the workload. iguFes
4 and Sthresholdlis equal to 50% of our workload size.
In our experiments the value thireshold2was varied for
a low (20), medium (60), and high (100), and thstbe
performance was achieved witthreshold2 equal to
medium (60). Our tool choosethreshold2 such that
indexes are considered on tables with a relatilesige
number of rows (about 120,000). However, the DBA ca
also set these threshold values.

Our results show that the auto-indexing tool is
sensitive to the parameters of the clustering #lyos
such ax for k-Means and for KEROUAC. The similarity

www.ijcrd.com

Page 852

International Journals of Combined Research & Dywalent
elSSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,J@04.6

of the queries in a cluster increases with the eslaf
these parameters and better results are achievieel. A
increasing these parameters up to a certain vahee,
results do not improve further. This is expectedaose

at this point, the same queries are clustered ltegeand
increasing the value of the parameters cannot iwegoro
the result of clustering further. On the other hati
lower the value of these parameters, the lowemhés t
comparison of queries in each cluster, and thesethie
poorer are the results and performance. Clearlg, th
choice of these parameters is very important. @stst
indicate that if the value of these parameterdasecto
the number of distinct queries in the workload,ceod)
presentation is achieved. The performance of blo¢h t
clustering algorithms is the same in the best easkin

the worst case[13]. As for the average case, the
performance critically depends on the choice of the
parameter of the clustering algorithm. Our tool
automatically computes the value of this parameter
that it works within the best performance range.

While calculating the performance of our technique
we have considered the parameter values withirmése
performance range because our tool computes the
clustering limits and thresholds such that it cperate
in the best performance range. When compared Wwéh t
case of no indexes, the performance improvemengusi
k-Means clustering is 78.89% and that using KEROUAC
is 79.95%. When comparing with the Frequent Itets se
Mining technique for index selection in [1], the
performance improvement usikgMeans is 71.43% and
that using KEROUAC is 73.26%.

When compared with Microsoft IST the performance
improvement with KEROUAC is 21.5% and that with k-
means was 16.2%. For a workload of 240 queries the
index suggestion time by Microsoft IST was about 8
minutes whereas our tool suggested it in less than
minutes.

iﬂ utes
in 3

—¢— threshold2=20
—#— threshold2=60
—@&— threshold2=100
—&— Microsoft IST
—3— No Index

—— Frequent ltemset

B

[
)

=4
Ll

Average query response time in
"

=3

3 5 8 10 12 15 20 25
Granularity factor-

Figure 5. Results with KEROUAC clustering.

6. Conclusions and futurework

Our technique is modest and requires very litthe in
on the part of the DBA. For example, two parameters
that our tool would essential are the size of digds in
the database artireshold2 The size of the tables can be
easily recovered from any DBMS, and the DBA can
provide the value of the thresholds within the
recommended best ranges or can accept the valwd whi
is provided by the tool. This technique will hekduce
the functions and difficulty of a DBA of a largetdbase
to choose a good set of indexes for a workload of
queries. Also this technique has the pro that it be
used with any database having an optimizer gifted o
outputting its choice of indexes for a given woddo By
using clustering algorithms we are able to direettyract
single-column and multi-column indexes instead haf t
iterative procedure followed by [3] which takes den
time to suggest indexes. The Frequent item setinqiin
technique [11] does not use the optimizer and ssiffe
from the disadvantages of outside tools. As for the
performance of the indexes, our results show that w
obtain better performance than [11] and IST.

Our trials show encouraging results. However, we
plan to test the requirement of our technique dfemdint
clustering algorithms, different sizes of workload,
various threshold values, by assigning unlike wisigind
with unlike frequency distributions of the workloa8lo
far we have used read-only queries. We plan tchéurt
carry out our experiments with UPDATE, INSERT and
DELETE queries in the workload[14]. We would also
like to compare our technique with ORACLE and DB2.

7. References

[1] K. Aouiche, J. Darmont and L. Gruenwald, “Frequent
itemsets mining for database auto-administratioB&venth
International Database Engineering and Applications
Symposium (IDEAS’03), July 16-18, 2003.

[2] S. Finkelstein, M. Schkolnick and P. Tiberio, “Plogs
Database Design for Relational DatabasA€M Transactions
on Database Systems (TODS), Volume 13, issue 1ckMar
1988), Pages 91 — 128, 1988

[3] S. Chaudhari and V. Narasayya, “An efficient, Costren
Index Selection Tool for Microsoft SQL ServeProceedings
of the 23rd Very Large Data Base Conference, 1997.

[4] R. Rankins, P. Bertucci and P. Jenson, “MicrosdplLS
Server 2000", SAMS Publishing, Second Edition,
UNLEASHED, Chapter 34.

[5] M. Adenberg, “Cluster Analysis for Applicatisih
Academic Press, , 1973.

[6] P. Jouve and N. Nicoloyannis, “KEROUAC: an Algonith
for Clustering Categorical Data Sets with Practical

www.ijcrd.com

Page 853

International Journals of Combined Research & Dywalent
elSSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,J@04.6

Advantages”

[11] Mike Hordila,“Setting up an Automated Index Rebirifgl
System”.http://www.oracle.com/oramag/webcolumnsi2a0t
0_index.html.

[8] A. Capara, M. Fischetti and D. Maio, "Exact and
Approximate Algorithms for the Index Selection Peh in
Physical Database DesignEEE Transactions on Knowledge
and Data Engineering, 7(6):955-967, December 1995

[9] “TPC Benchmark R”, (Decision Support) Standard
Specification, Revision 2.1.0, Transactions Prooess
Performance Council (TPC), 1993 — 2002

[10]N. Pasquier, Y.Bastide, R.Taouil, and L.LakH#&fficient
Mining of association Rules using closed itemstticies.”
InformationSystems:25-46,1999.

[12] G. Valentin, M. Zuliani, D. Zilio and G. Lohman, &2
Advisor: An optimizer Smart Enough to RecommendQisn
Indexes”, Int. Conf. on Data Engineering, March 200

www.ijcrd.com Page 854

