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Abstract : In opinion of the wide association of 
databases and its size, mainly in data warehouses, it is 
important to systematize the physical design so that the 
task of the database administrator (DBA) is minimized. A 
vital part of physical database design is index selection. 
An auto-index selection tool capable of exploring large 
amounts of data and suggesting a good set of indexes for 
a database is the goal of auto-administration. Clustering 
is a data mining technique with broad request and 
usefulness in exploratory data analysis. This idea 
provides a motivation to apply clustering techniques to 
obtain good indexes for a workload in the database. In 
this paper we describe a technique for using clustering 
auto-indexing. The experiments showed that the 
proposed technique performs better than Microsoft SQL 
Server Index Selection Tool and can suggest indexes 
faster than Microsoft’s IST. 
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1. Introduction 

Given a relational database system and a workload of 
queries that signifies a sample of transactions done in a 
database, the Index Selection Problem (ISP) contains 
selecting a set of index configurations for each table so 
that the cost for processing the workload is minimum 
subject to a edge on the total index space [2]. Since all 
indexes have a preservation cost during update, insertion 
and deletion, we cannot indefinitely increase the number 
of indexes on a database table. The Index Selection 
Problem has been approached differently by diverse 
researchers to build Index Selection Problem. We can 
classify tools that address the Index Selection Problem  

 
 

 
 
 
 
based on their approach in two ways. The first 

category  is external tools which use linear programming  
optimization techniques and other cost minimization  

techniques to resolve the Index Selection Problem [8]. 
Some external tools have also used data mining 
techniques to solve the Index Selection Problem [1]. The 
second category is the tools that consume the query 
optimizer to give cost estimates for various index 
structures and suggest a structure with the least cost 
estimation. [2], [3].  

A disadvantage with the first category is that the tool 
is detached from the optimizer. This means that there  
could be some indexes suggested by the tool which are 
not used by the optimizer while handling the workload. 
The presence of such indexes will be an overhead on the 
DBMS [2].. A second drawback is that these tools are 
based on the current knowledge of the strategy used by 
the optimizer and will become outdated as the optimizer 
changes.  

The second approach has the advantage that all 
indexes are chosen by the optimizer and will be used by 
the optimizer while handling the workload [3]. However, 
this approach requires many optimizer calls because 
many possible index configurations have to be evaluated 
by the optimizer. This means higher index suggestion 
time and longer processing time for other applications 
using the DBMS when indexes are being suggested.  

The idea behind our research is to chain the two 
approaches so that the major part of the solution to the 
Index Selection Problem is done externally and also use 
the optimizer to choose the final set of indexes. In our 
technique the optimizer is invoked only once for each 
query in the workload to choose the final set of indexes 
from a set of externally resolute index configurations. 
Also most of the existing external tools address only 
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single column and non-clustered indexes. Our tool has 
the capacity to suggest a set of single-column and multi-
column indexes as well as clustered and non-clustered 
indexes. We refer to [4] for the definition of these 
terminologies.  
The repose of the paper is organized as follows. In 
Section 2 we describe our index selection technique. In 
Section 3 we describe re-indexing. In Sections 4 and 5 
we discuss our research and results, respectively. In 
Section 6 we discuss conclusions and future work. 
 
2. Proposed Index Selection Technique 
 

Our suggested technique is based on the perception 
that the attributes that occur more frequently and 
frequently in a group of similar queries are likely to be 
useful for indexing[2] [4]. Based on this idea we group 
queries which are similar in terms of their use of 
attributes. Attributes which are accessed by all the 
queries in each group are mined as indexes. These 
indexes can be single-column or multi-column indexes. 
For multi-column indexes, the order of the columns is 
firm by assigning weights to attributes based on whether 
they are used in a search argument, join clause, GROUP 
BY/ORDER BY clause or aggregate function. A 
clustered index is also chosen by assigning weights to 
the attributes liable on whether they occur in range 
queries, join clause or GROUP BY/ORDER BY clause. 
A detailed clarification is given in Section 2.1. These 
indexes which are extracted are then submitted to the 
query optimizer for final selection for the given 
workload. The indexes not selected by the optimizer are 
eliminated. The remaining indexes are the final indexes 
suggested by our tool. 
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Figure 1  

The phases of the proposed auto-indexing technique 
 

Figure 1. shows the many phases of our method. In 
Section 2.1 we describe the identifying candidate indexes 
phase where we citation candidate indexable attributes, 
classify the ordering of multi-column indexes and 
identify clustered and non-clustered indexes. In Section 
2.2 we describe the clustering phase where queries based 
on attributes are grouped together. In Section 2.3 we 
discuss the candidate index proposal and creation phase, 
and in Section 2.4 we deliberate the query optimizer 
index elimination phase.  

 
2.1 Identifying candidate indexes 

 
During this stage a workload of queries is in use as 

input, indexable attributes are removed and a query-
attribute matrix [1] is created. While extracting indexable 
attributes we also consider columns in collective 
functions such as MIN, MAX, SUM, AVG and COUNT 
as indexable attributes because non clustered indexes can 
also be created on columns existing in aggregate 
functions [4].  

In a query-attribute matrix the occurrence of an 
indexable attribute in a query is showed by a 1 and 
absence by a 0 [1]. An example of a query-attribute 
matrix is shown in Figure 2. Let columns A and B belong 
to a table named T1 having 20 rows and C, D and E 
belong to a table named T2 having 15 rows in Figure 2. 
 
 

Queries  Indexable attributes   
 T1.A T1.B T2.C  T2.D T2.E 

Q1 1 0 1  1 0 
Q2 0 1 1  0 1 
Q3 1 1 1  0 1 
Q4 0 1 0  0 1 
Q5 1 1 1  0 1 

 
Figure 2. Query-attribute matrix [1] 

 
A query-frequency matrix is created during this phase 

to extract aspirant indexable attributes if their 
frequencies (Freq) satisfy equation (1). 
 
Freq > threshold1 OR Freq *  T > threshold2 (1)
 

In equation (1) Freq is the frequency of each 
indexable attribute in the workload and T is relative to 
the size of the table in rows to which the column goes. 
threshold1 removes the attributes that do not occur very 
regularly in the workload and threshold2 eliminates the 
attributes that do not belong to large tables except they 
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occur very frequently. Both the threshold values are 
mechanically added by the tool and can also be supplied 
by the user of the tool.  

An example of a query-frequency matrix is shown in 
Figure 3. In a query-frequency matrix the 0’s and 1’s of 
query-attribute matrix are replaced by the frequency of 
the attributes happening in the query. Let threshold1 be 
5 and threshold2 be 100 then the candidate indexable 
attributes are T1.B, T2.C and T2.E in Figure 3. The 
attributes A and E are removed from the query-attribute 
zmatrix. It is worth mentioning here that the frequency 
of a query in the workload is automatically taken care of 
by our technique. If a query appears many times in a 
workload, its corresponding attributes will occur many 
times in the query frequency matrix. As a result the 
chance of these attributes being selected up as candidate 
indexes increases. 
  

Queries   Indexable attributes  
 T1.A T1.B  T2.C T2.D T2.E 

Q1 2 0  1 3 0 
Q2 0 1  2 0 1 
Q3 1 1  3 0 1 
Q4 0 2  0 0 3 
Q5 1 4  2 0 2 
Freq 4 10  9 3 8 
Freq *  T 80 200  135 45 120 

 
Figure 3. Query-frequency matrix 

Ordering the columns constructed on our instinct that 
those columns occurring in a WHERE clause should be 
given higher priority to be chosen as an index than those 
columns which occur in GROUP BY or ORDER BY 
clauses and the least importance should be given to 
columns occurring in aggregate functions. According to 
the priorities, weights of 3, 2 and 1 are given to the 
columns occurring in a WHERE clause, GROUP BY or 
ORDER BY clauses and aggregate functions, 
respectively[5]. The total weight of an attribute in the 
workload is found and the attributes are ordered in 
downward order of weight from left to right in the query-
attribute matrix. The attributes stirring with high 
frequency query will have more weight and eventually 
will be placed on the left.  

The selection of clustered indexes is also done during 
this phase. Though clustered indexes cause an overhead 
they are also helpful to certain queries. We choose to 
create single-column clustered indexes in order to reduce 
overhead. Since clustered indexes should be created on 
columns happening frequently in range queries we assign 
more weight for range queries and the same weight for 
join clause and GROUP BY or ORDER BY clauses. The 
total weight of attributes in the workload is found and a 

higher rank is assigned to an attribute with a higher 
weight. We make the clustered indexes as selective as 
possible by also considering the rank of attributes 
according to selectivity. The higher the discrimination of 
an index, the higher is the possibility of the index being 
chosen by the optimizer to execute a query [4]. Clustered 
indexes are automatically created on primary key 
columns and for a primary key column selectivity is 
equal to 1. Therefore columns with selectivity equal to 1 
are not considered for clustered index however, they are 
considered for non-clustered index. The sum of the rank 
with discernment and rank with weights is calculated. 
The column with the highest sum for each table is chosen 
as the clustered index for that table. If two or more 
columns have the same sum then the column with a 
higher weight rank is chosen. This is because attributes 
occurring in range queries and having duplicate values 
should be given more importance than columns with 
higher selectivity. 
 
2.2 Clustering 
 
     Output of the identifying candidate index phase is the 
query attribute-matrix containing the ordered 
candidate indexable attributes. This query-attribute 
matrix is the input for the clustering phase. Our area is to 
group queries in a workload based on common attributes 
occurring in the query using the query attribute matrix in 
Figure 2. During the clustering phase queries that are 
similar based on common and frequently occurring 
attributes are clustered together. A possible clustering 
result from Figure 2 is [Q1], [Q2, and Q4] and [Q3]. 
 
 
2.3 Candidate index suggestion 
 

During this phase, those candidate indexable 
attributes which are mutual to all the queries clustered 
together during the clustering phase are suggested as 
indexes. For example from Figure 2, the suggested index 
configuration will be the index [T2.C, T2.D] for cluster 
[Q1], indexes [T1.B] and [T2.C] for cluster [Q3, Q5] and 
index [T1.B] for cluster [Q2, Q4]. Note that attributes 
T1.A and T2.E are not candidate indexable attributes. 
The order in the query-attribute matrix is maintained 
while creating multi-column indexes. These suggested 
indexes are then existing to the optimizer for final 
selection. 
 
2.4 Query optimizer index elimination 
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Our idea behind this phase is the presence of an 
optimizer capable of choosing from a set of virtual or 
theoretical indexes that outputs its choice and cost 
estimate for each query [7]. The optimizer uses its 
statistics and cost estimations to choose indexes for each 
query. In the absence of an optimizer which is capable of 
choosing from a virtual set of indexes in SQL Server we 
actually create indexes suggested from Section 3.3. Then 
we invoke the optimizer to find out the indexes estimated 
to be used to execute the workload[8]. Those indexes not 
being picked up by the optimizer are released because 
the presence of these unused indexes will cause an 
overhead of space and conservation in the database. The 
remaining indexes in the database are the final indexes 
suggested by our technique. 
 
3. Re-Indexing 
 
 
hich are part of new but not part of existing set are 
created, those which are part of existing set and not in 
new set are dropped and those which interconnect 
remain[9]. The process of dropping and creating indexes 
in the system follows similar methodology as Oracle’s 
Automated Index-Rebuild System [12] which can be 
done either online or offline. 
 
4. Experiments 
 

We have conducted experiments on Microsoft SQL 
Server 2000 [4] using the decision support TPC-R 
benchmark [9]. We have created TPC-R’s 1 GB database 
and have used 22 read-only queries from the benchmark 
to create a workload of 240 query cases[11]. The 22 
read-only benchmark queries are exponentially 
distributed in the workload.  

Our experiments use the k-Means [5], [6] clustering 
algorithms. The k-Means clustering algorithm accepts a 
parameter k from the user which is the final number of 
clusters for a group of observations. It is a well-
established clustering algorithm and has been used 
successfully in many applications. KEROUAC is a 
categorical data clustering algorithm and the final 
number of clusters is mechanically found in this 
algorithm. KEROUAC also accepts a parameter from the 
user known as the granularity factor which determines 
the degree of dissimilarity among clusters. Both these 
clustering algorithms have low computational costs and 
are advantageous to us to reduce the index suggestion 
time.  

We compare the performance of our technique with 
the baseline case where no indexes are created as well as 
with the Frequent Item sets Mining technique [1]. This 
technique uses the Close algorithm [11] to extract 
maximal set of items (attributes) that are common to a set 
of transactions and their support. Those item sets 
satisfying a minimum support are advised as indexes. 
The measure for comparison that we use is the average 
query response time in minutes. We also compare our 
technique with Microsoft SQL Server’s IST using its 
thorough tuning feature and no limitations on workload 
size and available disk space. 
 
5. Experiment results 
 

All our experiments are conducted on the system Intel 
Pentium 4-M, CPU 2.0GHz, 512 MB RAM. The results 
of the experiments conducted with k-Means and 
KEROUAC are shown in Figures 4 and 5, respectively. 
In Figure 4 the number of clusters k is depicted on the x-
axis, and the average query response time on the y-axis. 
In Figure 5 the value of is showed on the x-axis and the 
average query response time on the y-axis. In [1] it is 
reported that using the 22 read-only queries of TPC-R 
benchmark, the performance improvement of the 
frequent item sets mining technique when compared with 
the case of no indexes is from 15% to 25%. In Figures 4 
and 5 the performance improvement of 25% for [1] is 
shown with a straight line. Both the figures also show the 
average query response time when no indexes are present 
and when SQL Server’s recommended indexes are 
present in the database.  

While performing experiments we observed that the 
average query response time varies with the choice of 
threshold values and that the choice of the threshold 
values should be such that a extensive number of 
indexable attributes are eliminated but not many. We 
experimented with different values for threshold1 and 
threshold2. The performance is best when threshold1 is 
kept close to 50% of the size of the workload. In Figures 
4 and 5 threshold1 is equal to 50% of our workload size. 
In our experiments the value of threshold2 was varied for 
a low (20), medium (60), and high (100), and the best 
performance was achieved with threshold2 equal to 
medium (60). Our tool chooses threshold2 such that 
indexes are considered on tables with a relatively large 
number of rows (about 120,000). However, the DBA can 
also set these threshold values.  

Our results show that the auto-indexing tool is 
sensitive to the parameters of the clustering algorithms 
such as k for k-Means and for KEROUAC. The similarity 
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of the queries in a cluster increases with the values of 
these parameters and better results are achieved. After 
increasing these parameters up to a certain value, the 
results do not improve further. This is expected because 
at this point, the same queries are clustered together, and 
increasing the value of the parameters cannot improve 
the result of clustering further. On the other hand, the 
lower the value of these parameters, the lower is the 
comparison of queries in each cluster, and therefore, the 
poorer are the results and performance. Clearly, the 
choice of these parameters is very important. Our tests 
indicate that if the value of these parameters is close to 
the number of distinct queries in the workload, a good 
presentation is achieved. The performance of both the 
clustering algorithms is the same in the best case and in 
the worst case[13]. As for the average case, the 
performance critically depends on the choice of the 
parameter of the clustering algorithm. Our tool 
automatically computes the value of this parameter so 
that it works within the best performance range.  

While calculating the performance of our technique 
we have considered the parameter values within the best 
performance range because our tool computes the 
clustering limits and thresholds such that it can operate 
in the best performance range. When compared with the 
case of no indexes, the performance improvement using 
k-Means clustering is 78.89% and that using KEROUAC 
is 79.95%. When comparing with the Frequent Item sets 
Mining technique for index selection in [1], the 
performance improvement using k-Means is 71.43% and 
that using KEROUAC is 73.26%. 
 
When compared with Microsoft IST the performance 
improvement with KEROUAC is 21.5% and that with k-
means was 16.2%. For a workload of 240 queries the 
index suggestion time by Microsoft IST was about 8 
minutes whereas our tool suggested it in less than 2 
minutes. 
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Figure 5. Results with KEROUAC clustering. 
 

6. Conclusions and future work 
 

Our technique is modest and requires very little info 
on the part of the DBA. For example, two parameters 
that our tool would essential are the size of the tables in 
the database and threshold2. The size of the tables can be 
easily recovered from any DBMS, and the DBA can 
provide the value of the thresholds within the 
recommended best ranges or can accept the value which 
is provided by the tool. This technique will help reduce 
the functions and difficulty of a DBA of a large database 
to choose a good set of indexes for a workload of 
queries. Also this technique has the pro that it can be 
used with any database having an optimizer gifted of 
outputting its choice of indexes for a given workload. By 
using clustering algorithms we are able to directly extract 
single-column and multi-column indexes instead of the 
iterative procedure followed by [3] which takes longer 
time to suggest indexes. The Frequent item sets mining 
technique [11] does not use the optimizer and suffers 
from the disadvantages of outside tools. As for the 
performance of the indexes, our results show that we 
obtain better performance than [11] and  IST.  

Our trials show encouraging results. However, we 
plan to test the requirement of our technique on different 
clustering algorithms, different sizes of workload, 
various threshold values, by assigning unlike weights and 
with unlike frequency distributions of the workload. So 
far we have used read-only queries. We plan to further 
carry out our experiments with UPDATE, INSERT and 
DELETE queries in the workload[14]. We would also 
like to compare our technique with ORACLE and DB2. 
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