
International Journals of Combined Research & Development
eISSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,June- 2016

 www.ijcrd.com Page 848

Clustering With An Auto-Indexing for Tuning Databases

 KAVITHA S N JINCY C MATHEW BINOJ M

 Assistant Professor Assistant Professor Assistant Professor
 Department of MCA Department of MCA Department of MCA
 New Horizon College New Horizon College New Horizon College
 Of Engineering Of Engineering Of Engineering
 Bengaluru – 560103 Bengaluru – 560103 Bengaluru – 560103
 Karnataka Karnataka Karnataka

Abstract : In opinion of the wide association of
databases and its size, mainly in data warehouses, it is
important to systematize the physical design so that the
task of the database administrator (DBA) is minimized. A
vital part of physical database design is index selection.
An auto-index selection tool capable of exploring large
amounts of data and suggesting a good set of indexes for
a database is the goal of auto-administration. Clustering
is a data mining technique with broad request and
usefulness in exploratory data analysis. This idea
provides a motivation to apply clustering techniques to
obtain good indexes for a workload in the database. In
this paper we describe a technique for using clustering
auto-indexing. The experiments showed that the
proposed technique performs better than Microsoft SQL
Server Index Selection Tool and can suggest indexes
faster than Microsoft’s IST.

Keywords: DBA, Auto Indexing

1. Introduction

Given a relational database system and a workload of
queries that signifies a sample of transactions done in a
database, the Index Selection Problem (ISP) contains
selecting a set of index configurations for each table so
that the cost for processing the workload is minimum
subject to a edge on the total index space [2]. Since all
indexes have a preservation cost during update, insertion
and deletion, we cannot indefinitely increase the number
of indexes on a database table. The Index Selection
Problem has been approached differently by diverse
researchers to build Index Selection Problem. We can
classify tools that address the Index Selection Problem

based on their approach in two ways. The first

category is external tools which use linear programming
optimization techniques and other cost minimization

techniques to resolve the Index Selection Problem [8].
Some external tools have also used data mining
techniques to solve the Index Selection Problem [1]. The
second category is the tools that consume the query
optimizer to give cost estimates for various index
structures and suggest a structure with the least cost
estimation. [2], [3].

A disadvantage with the first category is that the tool
is detached from the optimizer. This means that there
could be some indexes suggested by the tool which are
not used by the optimizer while handling the workload.
The presence of such indexes will be an overhead on the
DBMS [2].. A second drawback is that these tools are
based on the current knowledge of the strategy used by
the optimizer and will become outdated as the optimizer
changes.

The second approach has the advantage that all
indexes are chosen by the optimizer and will be used by
the optimizer while handling the workload [3]. However,
this approach requires many optimizer calls because
many possible index configurations have to be evaluated
by the optimizer. This means higher index suggestion
time and longer processing time for other applications
using the DBMS when indexes are being suggested.

The idea behind our research is to chain the two
approaches so that the major part of the solution to the
Index Selection Problem is done externally and also use
the optimizer to choose the final set of indexes. In our
technique the optimizer is invoked only once for each
query in the workload to choose the final set of indexes
from a set of externally resolute index configurations.
Also most of the existing external tools address only

International Journals of Combined Research & Development
eISSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,June- 2016

 www.ijcrd.com Page 850

single column and non-clustered indexes. Our tool has
the capacity to suggest a set of single-column and multi-
column indexes as well as clustered and non-clustered
indexes. We refer to [4] for the definition of these
terminologies.
The repose of the paper is organized as follows. In
Section 2 we describe our index selection technique. In
Section 3 we describe re-indexing. In Sections 4 and 5
we discuss our research and results, respectively. In
Section 6 we discuss conclusions and future work.

2. Proposed Index Selection Technique

Our suggested technique is based on the perception
that the attributes that occur more frequently and
frequently in a group of similar queries are likely to be
useful for indexing[2] [4]. Based on this idea we group
queries which are similar in terms of their use of
attributes. Attributes which are accessed by all the
queries in each group are mined as indexes. These
indexes can be single-column or multi-column indexes.
For multi-column indexes, the order of the columns is
firm by assigning weights to attributes based on whether
they are used in a search argument, join clause, GROUP
BY/ORDER BY clause or aggregate function. A
clustered index is also chosen by assigning weights to
the attributes liable on whether they occur in range
queries, join clause or GROUP BY/ORDER BY clause.
A detailed clarification is given in Section 2.1. These
indexes which are extracted are then submitted to the
query optimizer for final selection for the given
workload. The indexes not selected by the optimizer are
eliminated. The remaining indexes are the final indexes
suggested by our tool.

W o rklo ad, d atab ase

in fo rm atio n

Id en tifyin g can d id ate in d

exes Externalto theO

C lu sterin g ptim izer

C an d id ate in d ex su g g estio

n an d creatio n

Q u ery o p tim izer in d

ex elim in atio n

Figure 1

The phases of the proposed auto-indexing technique

Figure 1. shows the many phases of our method. In
Section 2.1 we describe the identifying candidate indexes
phase where we citation candidate indexable attributes,
classify the ordering of multi-column indexes and
identify clustered and non-clustered indexes. In Section
2.2 we describe the clustering phase where queries based
on attributes are grouped together. In Section 2.3 we
discuss the candidate index proposal and creation phase,
and in Section 2.4 we deliberate the query optimizer
index elimination phase.

2.1 Identifying candidate indexes

During this stage a workload of queries is in use as

input, indexable attributes are removed and a query-
attribute matrix [1] is created. While extracting indexable
attributes we also consider columns in collective
functions such as MIN, MAX, SUM, AVG and COUNT
as indexable attributes because non clustered indexes can
also be created on columns existing in aggregate
functions [4].

In a query-attribute matrix the occurrence of an
indexable attribute in a query is showed by a 1 and
absence by a 0 [1]. An example of a query-attribute
matrix is shown in Figure 2. Let columns A and B belong
to a table named T1 having 20 rows and C, D and E
belong to a table named T2 having 15 rows in Figure 2.

Queries Indexable attributes
 T1.A T1.B T2.C T2.D T2.E

Q1 1 0 1 1 0
Q2 0 1 1 0 1
Q3 1 1 1 0 1
Q4 0 1 0 0 1
Q5 1 1 1 0 1

Figure 2. Query-attribute matrix [1]

A query-frequency matrix is created during this phase

to extract aspirant indexable attributes if their
frequencies (Freq) satisfy equation (1).

Freq > threshold1 OR Freq * T > threshold2 (1)

In equation (1) Freq is the frequency of each
indexable attribute in the workload and T is relative to
the size of the table in rows to which the column goes.
threshold1 removes the attributes that do not occur very
regularly in the workload and threshold2 eliminates the
attributes that do not belong to large tables except they

International Journals of Combined Research & Development
eISSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,June- 2016

 www.ijcrd.com Page 851

occur very frequently. Both the threshold values are
mechanically added by the tool and can also be supplied
by the user of the tool.

An example of a query-frequency matrix is shown in
Figure 3. In a query-frequency matrix the 0’s and 1’s of
query-attribute matrix are replaced by the frequency of
the attributes happening in the query. Let threshold1 be
5 and threshold2 be 100 then the candidate indexable
attributes are T1.B, T2.C and T2.E in Figure 3. The
attributes A and E are removed from the query-attribute
zmatrix. It is worth mentioning here that the frequency
of a query in the workload is automatically taken care of
by our technique. If a query appears many times in a
workload, its corresponding attributes will occur many
times in the query frequency matrix. As a result the
chance of these attributes being selected up as candidate
indexes increases.

Queries Indexable attributes
 T1.A T1.B T2.C T2.D T2.E

Q1 2 0 1 3 0
Q2 0 1 2 0 1
Q3 1 1 3 0 1
Q4 0 2 0 0 3
Q5 1 4 2 0 2
Freq 4 10 9 3 8
Freq * T 80 200 135 45 120

Figure 3. Query-frequency matrix

Ordering the columns constructed on our instinct that
those columns occurring in a WHERE clause should be
given higher priority to be chosen as an index than those
columns which occur in GROUP BY or ORDER BY
clauses and the least importance should be given to
columns occurring in aggregate functions. According to
the priorities, weights of 3, 2 and 1 are given to the
columns occurring in a WHERE clause, GROUP BY or
ORDER BY clauses and aggregate functions,
respectively[5]. The total weight of an attribute in the
workload is found and the attributes are ordered in
downward order of weight from left to right in the query-
attribute matrix. The attributes stirring with high
frequency query will have more weight and eventually
will be placed on the left.

The selection of clustered indexes is also done during
this phase. Though clustered indexes cause an overhead
they are also helpful to certain queries. We choose to
create single-column clustered indexes in order to reduce
overhead. Since clustered indexes should be created on
columns happening frequently in range queries we assign
more weight for range queries and the same weight for
join clause and GROUP BY or ORDER BY clauses. The
total weight of attributes in the workload is found and a

higher rank is assigned to an attribute with a higher
weight. We make the clustered indexes as selective as
possible by also considering the rank of attributes
according to selectivity. The higher the discrimination of
an index, the higher is the possibility of the index being
chosen by the optimizer to execute a query [4]. Clustered
indexes are automatically created on primary key
columns and for a primary key column selectivity is
equal to 1. Therefore columns with selectivity equal to 1
are not considered for clustered index however, they are
considered for non-clustered index. The sum of the rank
with discernment and rank with weights is calculated.
The column with the highest sum for each table is chosen
as the clustered index for that table. If two or more
columns have the same sum then the column with a
higher weight rank is chosen. This is because attributes
occurring in range queries and having duplicate values
should be given more importance than columns with
higher selectivity.

2.2 Clustering

 Output of the identifying candidate index phase is the
query attribute-matrix containing the ordered
candidate indexable attributes. This query-attribute
matrix is the input for the clustering phase. Our area is to
group queries in a workload based on common attributes
occurring in the query using the query attribute matrix in
Figure 2. During the clustering phase queries that are
similar based on common and frequently occurring
attributes are clustered together. A possible clustering
result from Figure 2 is [Q1], [Q2, and Q4] and [Q3].

2.3 Candidate index suggestion

During this phase, those candidate indexable
attributes which are mutual to all the queries clustered
together during the clustering phase are suggested as
indexes. For example from Figure 2, the suggested index
configuration will be the index [T2.C, T2.D] for cluster
[Q1], indexes [T1.B] and [T2.C] for cluster [Q3, Q5] and
index [T1.B] for cluster [Q2, Q4]. Note that attributes
T1.A and T2.E are not candidate indexable attributes.
The order in the query-attribute matrix is maintained
while creating multi-column indexes. These suggested
indexes are then existing to the optimizer for final
selection.

2.4 Query optimizer index elimination

International Journals of Combined Research & Development
eISSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,June- 2016

 www.ijcrd.com Page 852

Our idea behind this phase is the presence of an
optimizer capable of choosing from a set of virtual or
theoretical indexes that outputs its choice and cost
estimate for each query [7]. The optimizer uses its
statistics and cost estimations to choose indexes for each
query. In the absence of an optimizer which is capable of
choosing from a virtual set of indexes in SQL Server we
actually create indexes suggested from Section 3.3. Then
we invoke the optimizer to find out the indexes estimated
to be used to execute the workload[8]. Those indexes not
being picked up by the optimizer are released because
the presence of these unused indexes will cause an
overhead of space and conservation in the database. The
remaining indexes in the database are the final indexes
suggested by our technique.

3. Re-Indexing

hich are part of new but not part of existing set are
created, those which are part of existing set and not in
new set are dropped and those which interconnect
remain[9]. The process of dropping and creating indexes
in the system follows similar methodology as Oracle’s
Automated Index-Rebuild System [12] which can be
done either online or offline.

4. Experiments

We have conducted experiments on Microsoft SQL
Server 2000 [4] using the decision support TPC-R
benchmark [9]. We have created TPC-R’s 1 GB database
and have used 22 read-only queries from the benchmark
to create a workload of 240 query cases[11]. The 22
read-only benchmark queries are exponentially
distributed in the workload.

Our experiments use the k-Means [5], [6] clustering
algorithms. The k-Means clustering algorithm accepts a
parameter k from the user which is the final number of
clusters for a group of observations. It is a well-
established clustering algorithm and has been used
successfully in many applications. KEROUAC is a
categorical data clustering algorithm and the final
number of clusters is mechanically found in this
algorithm. KEROUAC also accepts a parameter from the
user known as the granularity factor which determines
the degree of dissimilarity among clusters. Both these
clustering algorithms have low computational costs and
are advantageous to us to reduce the index suggestion
time.

We compare the performance of our technique with
the baseline case where no indexes are created as well as
with the Frequent Item sets Mining technique [1]. This
technique uses the Close algorithm [11] to extract
maximal set of items (attributes) that are common to a set
of transactions and their support. Those item sets
satisfying a minimum support are advised as indexes.
The measure for comparison that we use is the average
query response time in minutes. We also compare our
technique with Microsoft SQL Server’s IST using its
thorough tuning feature and no limitations on workload
size and available disk space.

5. Experiment results

All our experiments are conducted on the system Intel
Pentium 4-M, CPU 2.0GHz, 512 MB RAM. The results
of the experiments conducted with k-Means and
KEROUAC are shown in Figures 4 and 5, respectively.
In Figure 4 the number of clusters k is depicted on the x-
axis, and the average query response time on the y-axis.
In Figure 5 the value of is showed on the x-axis and the
average query response time on the y-axis. In [1] it is
reported that using the 22 read-only queries of TPC-R
benchmark, the performance improvement of the
frequent item sets mining technique when compared with
the case of no indexes is from 15% to 25%. In Figures 4
and 5 the performance improvement of 25% for [1] is
shown with a straight line. Both the figures also show the
average query response time when no indexes are present
and when SQL Server’s recommended indexes are
present in the database.

While performing experiments we observed that the
average query response time varies with the choice of
threshold values and that the choice of the threshold
values should be such that a extensive number of
indexable attributes are eliminated but not many. We
experimented with different values for threshold1 and
threshold2. The performance is best when threshold1 is
kept close to 50% of the size of the workload. In Figures
4 and 5 threshold1 is equal to 50% of our workload size.
In our experiments the value of threshold2 was varied for
a low (20), medium (60), and high (100), and the best
performance was achieved with threshold2 equal to
medium (60). Our tool chooses threshold2 such that
indexes are considered on tables with a relatively large
number of rows (about 120,000). However, the DBA can
also set these threshold values.

Our results show that the auto-indexing tool is
sensitive to the parameters of the clustering algorithms
such as k for k-Means and for KEROUAC. The similarity

International Journals of Combined Research & Development
eISSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,June- 2016

 www.ijcrd.com Page 853

of the queries in a cluster increases with the values of
these parameters and better results are achieved. After
increasing these parameters up to a certain value, the
results do not improve further. This is expected because
at this point, the same queries are clustered together, and
increasing the value of the parameters cannot improve
the result of clustering further. On the other hand, the
lower the value of these parameters, the lower is the
comparison of queries in each cluster, and therefore, the
poorer are the results and performance. Clearly, the
choice of these parameters is very important. Our tests
indicate that if the value of these parameters is close to
the number of distinct queries in the workload, a good
presentation is achieved. The performance of both the
clustering algorithms is the same in the best case and in
the worst case[13]. As for the average case, the
performance critically depends on the choice of the
parameter of the clustering algorithm. Our tool
automatically computes the value of this parameter so
that it works within the best performance range.

While calculating the performance of our technique
we have considered the parameter values within the best
performance range because our tool computes the
clustering limits and thresholds such that it can operate
in the best performance range. When compared with the
case of no indexes, the performance improvement using
k-Means clustering is 78.89% and that using KEROUAC
is 79.95%. When comparing with the Frequent Item sets
Mining technique for index selection in [1], the
performance improvement using k-Means is 71.43% and
that using KEROUAC is 73.26%.

When compared with Microsoft IST the performance
improvement with KEROUAC is 21.5% and that with k-
means was 16.2%. For a workload of 240 queries the
index suggestion time by Microsoft IST was about 8
minutes whereas our tool suggested it in less than 2
minutes.

m
in

ut
es
 3

2.5
threshold2=20

in

tim
e

2 threshold2=60

re
sp

on
se

 threshold2=100

1.5
Microsoft IST

qu
e

ry

1 No Index

 Frequent Itemset

A
ve

ra
ge

0.5

0

 3 5 8 10 12 15 20 25

 Granularity factor-

Figure 5. Results with KEROUAC clustering.

6. Conclusions and future work

Our technique is modest and requires very little info
on the part of the DBA. For example, two parameters
that our tool would essential are the size of the tables in
the database and threshold2. The size of the tables can be
easily recovered from any DBMS, and the DBA can
provide the value of the thresholds within the
recommended best ranges or can accept the value which
is provided by the tool. This technique will help reduce
the functions and difficulty of a DBA of a large database
to choose a good set of indexes for a workload of
queries. Also this technique has the pro that it can be
used with any database having an optimizer gifted of
outputting its choice of indexes for a given workload. By
using clustering algorithms we are able to directly extract
single-column and multi-column indexes instead of the
iterative procedure followed by [3] which takes longer
time to suggest indexes. The Frequent item sets mining
technique [11] does not use the optimizer and suffers
from the disadvantages of outside tools. As for the
performance of the indexes, our results show that we
obtain better performance than [11] and IST.

Our trials show encouraging results. However, we
plan to test the requirement of our technique on different
clustering algorithms, different sizes of workload,
various threshold values, by assigning unlike weights and
with unlike frequency distributions of the workload. So
far we have used read-only queries. We plan to further
carry out our experiments with UPDATE, INSERT and
DELETE queries in the workload[14]. We would also
like to compare our technique with ORACLE and DB2.

7. References

[1] K. Aouiche, J. Darmont and L. Gruenwald, “Frequent
itemsets mining for database auto-administration”, Seventh
International Database Engineering and Applications
Symposium (IDEAS’03), July 16-18, 2003.
[2] S. Finkelstein, M. Schkolnick and P. Tiberio, “Physical
Database Design for Relational Databases”, ACM Transactions
on Database Systems (TODS), Volume 13, issue 1 (March
1988), Pages 91 – 128, 1988
[3] S. Chaudhari and V. Narasayya, “An efficient, Cost-Driven
Index Selection Tool for Microsoft SQL Server”, Proceedings
of the 23rd Very Large Data Base Conference, 1997.
[4] R. Rankins, P. Bertucci and P. Jenson, “Microsoft SQL
Server 2000”, SAMS Publishing, Second Edition,
UNLEASHED, Chapter 34.
[5] M. Adenberg, “Cluster Analysis for Applications”,
Academic Press, , 1973.
[6] P. Jouve and N. Nicoloyannis, “KEROUAC: an Algorithm
for Clustering Categorical Data Sets with Practical

International Journals of Combined Research & Development
eISSN:2321-225X,pISSN:2321-2241,Vol:5;Issue:6 ,June- 2016

 www.ijcrd.com Page 854

Advantages”
[11] Mike Hordila,“Setting up an Automated Index Rebuilding
System”.http://www.oracle.com/oramag/webcolumns/2001/aut
o_index.html.
[8] A. Capara, M. Fischetti and D. Maio, ”Exact and
Approximate Algorithms for the Index Selection Problem in
Physical Database Design”, IEEE Transactions on Knowledge
and Data Engineering, 7(6):955-967, December 1995
[9] “TPC Benchmark R”, (Decision Support) Standard
Specification, Revision 2.1.0, Transactions Processing
Performance Council (TPC), 1993 – 2002
[10]N. Pasquier, Y.Bastide, R.Taouil, and L.Lakhal, ”Efficient
Mining of association Rules using closed itemset lattices.”
InformationSystems:25-46,1999.
[12] G. Valentin, M. Zuliani, D. Zilio and G. Lohman, “DB2
Advisor: An optimizer Smart Enough to Recommend its Own
Indexes”, Int. Conf. on Data Engineering, March 2002.

