
International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 3; March -2017

 www.ijcrd.com Page 873

Optical Character Recognition using Machine Learning
AbhilashRejanair,Anand C. Mathew and Dr. Sarojadevi H

Department of Computer Science and Engineering
NitteMeenakshi Institute of Technology

Bangalore – 560064

Abstract : The aim of this paper is to use image
processing and machine learning concepts to detect
patterns in the input image data, from which we try to
identify and classify the pattern and thereby transform
the input image into its machine understandable
counterpart. The input is a real world unfilteredimage
which is then processed to extract features using image
processing techniques. The extracted features are
classified using machine learning algorithms, which are
previously trained using a standard dataset. Out of the
several algorithms experimented, Neural networks and
SVM are found to perform the best.

1. INTRODUCTION

Machine learning, as the name implies, is a system which
unlike conventionally programmed systems, has the ability
to “learn” dynamically without being programmed
explicitly. Machine learning systems are similar to data
mining systems in the fact that they search through data to
look for, obtain, extract and categorize data by their
differing patterns. Applying machine learning algorithms for
image processing applications can produce clear advantages.

This paper presentsimage processing capabilities, combined
with machine learning algorithms to detect patterns in the
data from which we successfully identify and classify the
said pattern. The work presentedis an application of the
classification problem of machine learning, which is done
by a supervised learning process, as well as the application
of image processing algorithms like segmentation,
thresholding and contour detection. Data recognition and
classification is done by usingdifferent machine learning
algorithmsand a comparative analysis is carried out.

2. DESIGN

The designinvolves major stages as shown in figure 1.

Image Acquisition
This is the first and the basic step of digital image
processing. It is as simple as being given an image, which is
already in digital form. The image taken is acquired by the
computer as the input device. In our approach we have also
taken images from MNIST data for systematic analysis.

Image Enhancement
The next phase is the image enhancement,which highlights
certain features of interest in an image, like brightness,
contrast, etc.

Image Restoration
The next phase is the image restoration. This phase deals
with improving the appearance of the image. The restoration
is done based in mathematical probabilistic models.

Compression
This phase deals with techniques for reducing the storage
required to save an image or the bandwidth to transmit it. It
is very much necessary to compress data.

Segmentation
This phase partitions an image into its constituent parts or
objects. This phase is the most difficult phase of all. To
extract information from the image, it is required it identify
the objects individually.

Representation
This phase follows the segmentation phase. The output of
the segmentation phase is usually a raw pixel data that
includes either the boundary of a region or all the points in
the region. This raw data should be translated into a form
that can be processed by the computer. This is handled by
the representation phase.

Object Recognition
This phase is the process of assigning a label to an object
based on its descriptors. We use a machine algorithm to
recognize the objects.

The first step to image processing is determining the
intensity of the pixel.
Pixel Intensity
Pixel intensity is the brightness of the pixels present in the
image.

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 3; March -2017

 www.ijcrd.com Page 874

Fig 1. Design Flow

We need to determine the pixel intensity in order to pre-
process it. Pixel intensity for optical character recognition is
determined usingthe below mentioned formula using the
R,G & B color component values.

Pixel intensity = 0.30R + 0.59G + 0.11B
Once we have calculated the pixel intensity, it becomes
easier to determine the edges. To determine the edges we
use Canny edge detection algorithm. On applying Canny
edge detection on image A we get the image B.

3. EDGE BASED CONNECTED COMPONENT
For analyzing given image, we have to binarize it so as to
extract related information, detect data patterns statistically,
and perform operations on it. This is done by an edge-based
connected components approach. This approach is used for
detecting the threshold for each component, which can then
be used to differentiate the character (foreground) from the
background in the case of OCR (Optical Character
Recognition) application. Edge detection is performed on
each channel (R, G and B) and is combined using logical
OR to determine the actual edge from which an edge box is
drawn. The edge box is drawn in such a way as to eliminate
the boxes with minimal or small area to avoid false
detection.

To create an edge based connected component, the first step
is to detect the edges. This is done by the Canny edge
detection algorithm.

3.1. Canny Edge Detection Algorithm

3.1.1. Development of Canny Algorithm

The Canny edge detector is an edge detection operator that
uses a multi-stage algorithm to detect a wide range of edges
in images. It was developed by John F. Canny.

Canny edge detection is a technique to extract useful
structural information from different vision objects and
dramatically reduce the amount of data to be processed. It
has been widely applied in various computer vision systems.
Canny has found that the requirements for the application of
edge detection on diverse vision systems are relatively
similar. Therefore an edge detection solution can be
implemented in a wide range of situations.

3.1.2. Process of Canny Edge Detection Algorithm
The process of Canny edge detection involves the following
5 steps:

1. Apply Gaussian filter to smoothen the image in
order to remove the noise

2. Find the intensity gradients of the image
3. Apply non-maximum suppression to get rid of

spurious response to edge detection
4. Apply double threshold to determine potential

edges
5. Track edge by hysteresis: Finalize the detection of

edges by suppressing all the other edges that are
weak and not connected to strong edges.

3.1.2.1. Gaussian Filter

All the resultant images from the edge detection are affected
by noise. Thus, it is very essential to remove or eliminate the
noise. This can be done by applying the Gaussian filter.

The Gaussian filter smoothens the image to get rid of the
noise from the digital image. The formula for applying the
Gaussian filter is:

�� � 1
√2�� 	
��
��

���

The equation is applied in the vertical as well as in the
horizontal direction, which is indicated by��� � ��� in the
above formula. Once applied, the formula produces a
surface whose contours are concentric circles. These values
are then used for generating a convolution matrix, which is
applied to the original image.

Image Acquisition

Image Enhancement

Image Restoration

Compression

Segmentation

Representation

Object Recognition

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 3; March -2017

 www.ijcrd.com Page 875

3.1.2.2. Intensity Gradient

In an image, the edge may point to a variety of directions.
So the Canny edge detection algorithm basically uses four
filters to detect the horizontal, vertical and the diagonal
edges in the blurred image.

� � ���� � � ����

The edge detection operator, (in this case Sobel) returns a
value for the first derivative in the horizontal direction (��)
and vertical direction (��).

3.1.2.3. Non Maximum Suppression

This is an edge thinning technique. Non-Maximum
suppression is applied to "thin" the edge. After applying
gradient intensity calculation, the edge extracted from the
gradient value is still quite blurred. Thus non-maximum
suppression can help to suppress all the gradient values to 0
except the local maxima, which indicates location with the
sharpest change of intensity value. Continuing the process
with thick edges becomes a problem, as it may result in a
faulty edge. Thus, it is essential to suppress those thick
edges by finding out the brightest pixel among the edges in
the same direction. The algorithm for each pixel in the
gradient image is as below.

1. Compare the edge strength of the current pixel with
the edge strength of the pixel in the positive and
negative gradient directions.

2. If the edge strength of the current pixel is the
largest compared to the other pixels in the mask
with the same direction (i.e., the pixel that is
pointing in the y direction, it will be compared to
the pixel above and below it in the vertical axis),
the value will be preserved. Otherwise, the value
will be suppressed.

3.1.2.4. Double Thresholding

After the application of non-maximum suppression, the
edges that remain provide an accurate representation of real
edges. However few edges remain, that are the outcome of
noise and variation in colour. As a result these spurious
edges are eliminated. This is done by double thresholding. It
is important to retain the edge pixel with high gradient value
and remove the ones with the low gradient value. This is
accomplished by selecting high threshold and low threshold
values. If the gradient value of an edge pixel is higher than
the high threshold, it is marked as a strong edge pixel. If the
gradient value of an edge pixel is smaller than the high
threshold and larger than the low threshold, it is marked as a

weak edge pixel. If an edge pixel's value is smaller than the
low threshold value, it will be suppressed. The two threshold
values are analytically determined and their definition will
depend on the content of a given input image.

3.1.2.5. Edge Tracking by Hysteresis

So far, the strong edge pixels should certainly be involved in
the final edge image, as they are extracted from the true
edges in the image. However, there will be some debate on
the weak edge pixels, as these pixels can either be extracted
from the true edge, or the noise/color variations. To achieve
an accurate result, the weak edges caused by the latter
reasons should be removed. Usually a weak edge pixel
caused from true edges will be connected to a strong edge
pixel while noise responses are unconnected. To track the
edge connection, blob analysis is applied by looking at a
weak edge pixel and its 8 connected neighborhood pixels.
As long as there is one strong edge pixel that is involved in
the blob, that weak edge point can be identified as one that
should be preserved.

The approach used in this work is the edge based connected
component analysis. The reason for choosing this approach
is as follows. This approach is used to detect the threshold
for each component, which can then be used to differentiate
the character (foreground) from the background. Edge
detection is performed on each channel (R, G and B) and is
combined to using logical OR to determine the actual edge
from which, an edge box is drawn. Canny edge detection is
performed individually on each channel of the colour image
and the edge map E is obtained by combining the three edge
images as follows.

E = ER ∨EG ∨EB

 Here, ER, EG and EB are the edge images corresponding to
the three colour channels and ∨denotes the logical OR
operation.

An 8-connected component labelling, follows the edge
detection step and the associated bounding box information
is computed. We call each component, thus obtained, an
edge-box (EB). We make some sensible assumptions about
the document and use the area and the aspect ratios of the
EBs to filter out the obvious non-text regions. The aspect
ratio is constrained to lie in between 0.1 and 10 in order to
eliminate elongated regions. The size of the EB should be
greater than 15 pixels but smaller than 1/5th of the image
dimension to be considered for further processing.

Since the edge detection captures both the inner and outer
boundaries of the characters, it is possible that an EB may
completely enclose one or more EBs as illustrated in Fig. 2.

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321

 www.ijcrd.com

We have computed edge boxes forEnglish
numerals. Some characters have two edge boxes.
not more than two edge boxes on any character.

Edge boundary is determined as shown in Fig.2
gives rise to two components. One is due to the inner
boundary. Let’s name it as EB(in). The other is due to
outer boundary. Let’s name this as EB(out).
has exactly one or two EBs inside it, then those inside
EBs can be neglected or ignored. On the other hand, if
an EB encloses more than three EBs then the external
EB(out) is ignored.
Thus, the unwanted components are eliminated by
subjecting each edge component to the following
constraints:
if (Nint<3)
{Reject EB(in) Accept EB(out)}
else
{Reject EB(out), Accept EB(in)}

where EB(in) denotes the EBs that lie completely inside
the current EB under consideration and N(in)
of EB(in). These constraints on the edge components
effectively remove the obvious non-text elements while
retaining all the text-like elements. Only the filtered set of
EBs are considered for binarization.

The choice of window size in local methods can severely
affect the result of binarization and may give rise to broken
characters and voids, if the characters are thicker than the
size of the window considered. Moreover, we often
encounter text of different colours in a document image.
Conventional methods assume that the polarity of the
foreground-background intensity is known a priori. I
have multicolour textual content and varying background
shades. A conventional binarization technique, using a fixed
foreground background polarity, treats some characters as
background, leading to the loss of some textual information
generally assumed to be either bright on a dark background
or vice versa. If the polarity of the foreground background
intensity is not known, the binary decision logic could treat
some text as background and no further processing can be
done on those text characters.

A simple decision logic is to invert the result of binarization
based on the assumption that the background pixels far
outnumber the text pixels. Within each window, the number
of pixels having intensity values higher or lower than the
threshold are counted and the one which is less in number is
treated as the foreground text. This simple inversion logic
cannot handle the case where the characters are thick and
occupy a significant area of the window under
consideration.

Binarization using a single threshold on such images,
without a priori information of the polarity of foreground

International Journal of Combined Research & Development (IJCRD)
225X;pISSN:2321-2241 Volume: 6; Issue: 3; March

www.ijcrd.com

English alphabets and
numerals. Some characters have two edge boxes. There are

edge boxes on any character.

Fig.2 which
gives rise to two components. One is due to the inner
boundary. Let’s name it as EB(in). The other is due to
outer boundary. Let’s name this as EB(out). If an EB
has exactly one or two EBs inside it, then those inside

neglected or ignored. On the other hand, if
an EB encloses more than three EBs then the external

Thus, the unwanted components are eliminated by
h edge component to the following

denotes the EBs that lie completely inside
(in) is the number

ese constraints on the edge components
text elements while

like elements. Only the filtered set of

he choice of window size in local methods can severely
t the result of binarization and may give rise to broken

characters and voids, if the characters are thicker than the
size of the window considered. Moreover, we often
encounter text of different colours in a document image.

t the polarity of the
background intensity is known a priori. Images

have multicolour textual content and varying background
shades. A conventional binarization technique, using a fixed

some characters as
ackground, leading to the loss of some textual information

generally assumed to be either bright on a dark background
or vice versa. If the polarity of the foreground background
intensity is not known, the binary decision logic could treat

kground and no further processing can be

A simple decision logic is to invert the result of binarization
based on the assumption that the background pixels far
outnumber the text pixels. Within each window, the number

els having intensity values higher or lower than the
threshold are counted and the one which is less in number is
treated as the foreground text. This simple inversion logic
cannot handle the case where the characters are thick and

a of the window under

Binarization using a single threshold on such images,
without a priori information of the polarity of foreground-

background intensities, will lead to loss of textual
information as some of the text may be assigned as
background. The characters once lost cannot be retrieved back and

are not available for further processing. Possible solutions need to
be sought to overcome this drawback so that any type of document
could be properly binarized without the loss of textual

After pre-processing we get an image, with foreground as black
and background as white. In other words, the text or any characters
will be in black colour, the remaining regions are in white colour.

4. IMPLEMENTATION
The flow chart in fig.3 shows
technique used in the work. Starting from
image as the input, all the way up to resizing the image to 28x28
size dimension is part of image processing
important algorithm that the above process utilize

edge detection algorithm which is already explained.

image processing used in this
listed below. These process steps are shown in fig.3 and
detailed below.

I. Input the image
II. Binarize the image

III. Invert the image
IV. Create bounding box on the characters
V. Extract the bounding box to a 28X28 sized

 Figure 3.

Input

Binarize

the image

Invert the

Image

Fig. 2. Edge Boundary

International Journal of Combined Research & Development (IJCRD)
; March -2017

Page 876

background intensities, will lead to loss of textual
information as some of the text may be assigned as

nce lost cannot be retrieved back and

are not available for further processing. Possible solutions need to
be sought to overcome this drawback so that any type of document

without the loss of textual information.

get an image, with foreground as black
ground as white. In other words, the text or any characters

will be in black colour, the remaining regions are in white colour.

IMPLEMENTATION
 the design flow of the process or

. Starting from giving the handwritten
as the input, all the way up to resizing the image to 28x28

size dimension is part of image processing of this work. The
the above process utilizes is the Canny

ch is already explained.The whole of
image processing used in this work sums up to 5 phases

These process steps are shown in fig.3 and

Create bounding box on the characters
Extract the bounding box to a 28X28 sized

 Design Flow

Invert the

Image

Create

Bounding

Box

Bounding box to

28x28 sized

dimension

2. Edge Boundary

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321

 www.ijcrd.com

I. Input the image
An user can write anything that he wishes the computer to
recognize on a paper. Then a snapshot of the hand written
text is taken from a phone and given as input to the
computer to process the image in a format that is understood
by the computer.
 The figure 4 below is a sample input image written in hand.
The text reads “WELCOME”.

Fig.4. Input Image

II. Binarize the image
Once the input image is read, the process of edge based
connected component approach is applied. The edge based
connected component as discussed, starts with the
edge detection. It starts looking for the edges, so that it can
draw edge boxes around the characters. The background is
made white in colour and the foreground is made black in
colour.The Canny edge detection algorithm uses the
Gaussian filter to smoothen the image, as a result of which
the noise is removed. Figure 5 shows a binarized image.

Fig.5. Binarized Image

III. Inverting the image
The next step that happens after binarizing the image is
inverting the image. We invert the image t
characters, we compare the input image to the data present
in the Mnist data set. Mnist data set is a database that
contains handwritten digits, has a training set of 60,000
examples, and a test set of 10,000 examples. The digits in
the mnist database have been size-normalized and centered
in a fixed-size format. The images are resized to a 28X28
sized images. The images are stored in terms of their
respective pixel values. Therefore each image is represented
by a total of 784 pixels. To match the binarized image with
that of the MNIST database, we invert the image.

The figure 6 below shows the inverted image:

International Journal of Combined Research & Development (IJCRD)
225X;pISSN:2321-2241 Volume: 6; Issue: 3; March

www.ijcrd.com

user can write anything that he wishes the computer to
recognize on a paper. Then a snapshot of the hand written

is taken from a phone and given as input to the
computer to process the image in a format that is understood

below is a sample input image written in hand.

Once the input image is read, the process of edge based
connected component approach is applied. The edge based
connected component as discussed, starts with the Canny
edge detection. It starts looking for the edges, so that it can

he characters. The background is
ground is made black in

edge detection algorithm uses the
Gaussian filter to smoothen the image, as a result of which

Figure 5 shows a binarized image.

The next step that happens after binarizing the image is
We invert the image to recognize the

age to the data present
set is a database that

contains handwritten digits, has a training set of 60,000
examples, and a test set of 10,000 examples. The digits in

normalized and centered
size format. The images are resized to a 28X28

sized images. The images are stored in terms of their
respective pixel values. Therefore each image is represented
by a total of 784 pixels. To match the binarized image with

database, we invert the image.

verted image:

Fig.6. Inverted Image

IV. Creating Bounding Box
Once the image is inverted, each white character is bounded
into a box. This is done so that each character is separated,
from which it is later extracted. There is an openCV
function that is used to find the contour
normally uses watershed algorithm. The
algorithm is basically used to create the bounding box on
characters that are very close to each other. This algorithm is
time consuming. However there is al
that does not consume much time. This algorithm is called
Suzuki algorithm and is used to create bounding boxes on
characters that are far apart from each other.
The Suzuki algorithm initially has the start pixel. It moves
along all the directions to see if there is a pixel next to the
start pixel. If it exists, then the new pixel becomes the start
pixel and the process continues.
The algorithm comes to an end, if it does
next to the start pixel.
The figure 7 below shows the boun
characters.

Fig. 7. Bounded Boxes

V. Extracting the bounding box to a 28X28 sized
image

The bounding box then extracted to separate images of size
28x28. The images are resized to a 28x28 dimension
because the MNIST database contain
28x28. If not resized then the comparison will be

International Journal of Combined Research & Development (IJCRD)
; March -2017

Page 877

Inverted Image

Creating Bounding Box
Once the image is inverted, each white character is bounded
into a box. This is done so that each character is separated,
from which it is later extracted. There is an openCV

d to find the contours. This function
atershed algorithm. The Watershed

algorithm is basically used to create the bounding box on
characters that are very close to each other. This algorithm is
time consuming. However there is also another algorithm

much time. This algorithm is called
Suzuki algorithm and is used to create bounding boxes on
characters that are far apart from each other.
The Suzuki algorithm initially has the start pixel. It moves

to see if there is a pixel next to the
start pixel. If it exists, then the new pixel becomes the start
pixel and the process continues.
The algorithm comes to an end, if it does not find any pixel

below shows the bounding box created on the

Bounded Boxes

Extracting the bounding box to a 28X28 sized

extracted to separate images of size-
28x28. The images are resized to a 28x28 dimension

database contains images of dimension
28x28. If not resized then the comparison will be

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321

 www.ijcrd.com

incompatible. For example consider the letter “W” and “E”
from the word “WELCOME”. The two letters are resized to
a 28x28 dimension.

The figure below shows the images resized to a 28x2
dimension.

Fig.8. 28x28 Sized-Image

The above figure shows how the two letters look when they
are resized to a 28x28 dimension. The step is not complete,
without representing the 28x28 sized images to their
respective pixel arrays. Each pixel is represented by 3
values. But we need to convert the pixel array to a list, such
that each pixel is represented only by one value. This is
done by taking the mean of the three numbers that represent
a pixel. This process is computed for all the other pixels,
thereby deriving a list of all the pixels, that are represented
by one value. Hence the total number of value that will be
present the list are 784 elements i.e. 28x28=784.

5. MACHINE LEARNING
Machine Learning is used extensively to predict the
character by the algorithm. The machine learning algorithm
is first trained by the MNIST dataset. It is then
then tested against a test dataset from which we can
determine the confidence value or the accuracy of the
machine learning algorithm for the data.
5.1. Dataset
To train the machine, we needed a dataset which has lots of
variation between its data. The dataset also needs to be large
enough to train the machine for it to work with data
not from the dataset itself,also with the features extra
from the manually created images.

Fig.9. MNIST Dataset

International Journal of Combined Research & Development (IJCRD)
225X;pISSN:2321-2241 Volume: 6; Issue: 3; March

www.ijcrd.com

incompatible. For example consider the letter “W” and “E”
from the word “WELCOME”. The two letters are resized to

The figure below shows the images resized to a 28x28

The above figure shows how the two letters look when they
are resized to a 28x28 dimension. The step is not complete,
without representing the 28x28 sized images to their

presented by 3
values. But we need to convert the pixel array to a list, such
that each pixel is represented only by one value. This is
done by taking the mean of the three numbers that represent
a pixel. This process is computed for all the other pixels,
thereby deriving a list of all the pixels, that are represented
by one value. Hence the total number of value that will be
present the list are 784 elements i.e. 28x28=784.

MACHINE LEARNING
Machine Learning is used extensively to predict the

The machine learning algorithm
. It is then trained and

then tested against a test dataset from which we can
determine the confidence value or the accuracy of the

taset which has lots of
variation between its data. The dataset also needs to be large

for it to work with data that is
with the features extracted

We use the standard MNIST
to train our machine learning algorithms.
database is a subset of the larger NIST database, but in
MNIST, the sizes of the digits have been corrected and have
been centered into the center of the image.
widely used for in many optical character recognition
implementations to identify digits.
The dataset consists of a 28x28 size image which is
available in a binary C-structure format. Each element of the
dataset is a linear array of size 784 pixels, which are in
greyscale.
MNIST provides 60,000 images in its training dataset and
10,000 different images in the testing dataset.
We do not require the full dataset of
large amount of time processing takes for different machine
learning algorithms, so therefore, we take around 4000
elements from the training dataset and 400 elements from
the testing dataset to determine the accuracy and various
other parameters.
Since MNIST provides only digits, this project only deals
with the recognition of digits and not, say, alphabet
characters, special characters, punctuation, etc.

5.2. Machine Learning Algorithms
The following machine learning algorithms are
project

5.2.1.Linear Regression
Simple Linear Regression is the approach of
relationship between a dependent variable and an
independent variable using a linear function of the
independent variable. On training the machine with lin
regression, it was noticed that it is impossible for linear
regression algorithm to fit the data and therefore, cannot be
used in this use-case of optical character recognition.

5.2.2.Logistic Regression

Logistic Regression is the analysis of relatio
binary dependent variable and independent variable. It is
used mainly in classification machine learning problems.
The response of the data is binary and it is used to estimate
the probability of a certain state, such as 0 or 1, pass or fai
etc. Compared to the more complex machine learning
algorithms available, logistic regression is simple to
implement.

The following equation denotes the logistic function
denotes the probability of
particular class.

International Journal of Combined Research & Development (IJCRD)
; March -2017

Page 878

We use the standard MNIST database of handwritten digits
to train our machine learning algorithms. The MNIST
database is a subset of the larger NIST database, but in

its have been corrected and have
been centered into the center of the image. This dataset is
widely used for in many optical character recognition
implementations to identify digits.
The dataset consists of a 28x28 size image which is

structure format. Each element of the
dataset is a linear array of size 784 pixels, which are in

MNIST provides 60,000 images in its training dataset and
10,000 different images in the testing dataset.
We do not require the full dataset of MNIST because of the
large amount of time processing takes for different machine
learning algorithms, so therefore, we take around 4000
elements from the training dataset and 400 elements from
the testing dataset to determine the accuracy and various

Since MNIST provides only digits, this project only deals
with the recognition of digits and not, say, alphabet
characters, special characters, punctuation, etc.

Machine Learning Algorithms
The following machine learning algorithms are used in the

Regression is the approach of determining
relationship between a dependent variable and an

ariable using a linear function of the
On training the machine with linear

regression, it was noticed that it is impossible for linear
regression algorithm to fit the data and therefore, cannot be

case of optical character recognition.

is the analysis of relationship between a
dent variable and independent variable. It is

classification machine learning problems.
The response of the data is binary and it is used to estimate
the probability of a certain state, such as 0 or 1, pass or fail,

Compared to the more complex machine learning
algorithms available, logistic regression is simple to

The following equation denotes the logistic function that
denotes the probability of that an element belongs to a

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 3; March -2017

 www.ijcrd.com Page 879

We can also determine the probability of it not belonging to
a class by subtracting the above sigmoid function by 1.

5.2.3. K Nearest Neighbor

K Nearest Neighbor is a simple machine learning algorithm
used for machine learning classification problems. This
algorithm involves identifying the neighbors of the given
element so as to identify its position and then determine or
predict the classification of that given element. The distance
metric used to find the neighbors is the Euclidean distance
formula (or sometimes also the hamming distance).

In this implementation, Euclidean distance is used given by
the following formula.

� � ��� � �� � �� � !�

K Nearest Neighbor classifier works extremely well for this
particular problem of optical character recognition, because
since there is no co-relation or any connection among the
various pixels in the same image, it makes it easy for k
nearest algorithm to simply classify the data based on the
position of each pixels during the training set.

To predict the classification of an image, we first take the
new data and we scatter plot it on the graph. We compare all
the nearest neighbors of the give new point, as denoted by
the value of k provided. We have tried various values of k
and have found that the value of k at 5 performs optimally
considering the time taken to train the machine as well as
the size in memory.

5.2.4. Support Vector Machines

Support Vector Machines is a machine learning model that
is used for classification problems. This model assigns data
to different categories depending on its values and then
determines or predicts new examples non-probabilistically.
Different categories of plane exist in their own dimension as
determined by the algorithm. A plane called the hyper-plane
is used to separate between these dimensions linearly, which
is why SVM is called a linear classifier.

SVMs are not based on probability, therefore, they gather a
better result in the problem of optical character recognition.
Given the 10 different classes of the problem (that is, from 0
to 9 of the numeric digits), the hyperplane is constructed in
an infinite dimension space, which is used as a multi-
classifier to distinguish the different digits.

The SVM implemented is based on the well-known libsvm
library implementation. Universally, SVMs are widely used

for machine learning applications for images such as optical
character recognition, image segmentation, etc.

5.2.5. Decision Trees

A decision tree is similar to the tree data structure. It
consists of the root, branches and many hierarchical nodes.
Each node depicts a decision or an attribute and each branch
denotes the outcome. This concept is used in machine
learning to obtain a process called decision tree learning.

Decision trees in general are easy to interpret and visualize
when compared to other algorithms. The data for decision
trees also require less preparing or pre-processing such as
normalization or scaling, etc.

However, decision trees are also prone to be over-fitted,
which causes it to reduce its accuracy score. There are also
chances that depending on certain data, a bias can be
created, which causes further inputs to not be trained
successfully. To solve this issue, other machine learning
algorithms based on the decision trees such as Random
Forest and Extra Trees are used.

5.2.6. Random Forest

Random Forest is a machine learning method based on
decision trees. It works by constructing multiple decision
trees and then by selectively providing training data to the
decision trees, arrives at the output by finding the mean or
the average of the individually created smaller decision
trees.

In Random Forest, the entire data is not taken immediately,
but subsets of the data are selected and then a decision tree
is constructed based on the subset data. Many such trees are
created and the final output is based on the aggregate of
such subset data created decision trees.

Using subsets instead of the whole data helps in removing
the bias created by a complete decision tree.

It also helps to prevent over fitting, where the machine tries
to fit the data more than it is needed, thereby reducing its
performance and value.

5.2.7. Extra Trees

Extra trees is a variantof Random Forest machine learning
algorithm method. In this method, the decision boundaries
are picked randomly instead of the best boundary available.

The changes in Extra Trees compared to Random Forest are
minimal, expect for one important difference. In Extra
Trees, the samples are drawn randomly similar to Random

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 3; March -2017

 www.ijcrd.com Page 880

Forest, but the sample is from the entire training set rather
than from a subset, as in Random Forests.

The accuracy and performance of Extra Trees is very similar
to that of Random Forest, though it performs slightly better.

5.2.8. Gaussian Naïve Bayes

Naïve Bayes machine learning algorithm is based on Bayes
probability theorem. The decision boundaries are made
based on probability. Gaussian is a Naïve Bayes machine
learning model which uses the Gaussian model for the
classification part of the algorithm. Bayes Probability
theorem, on which this algorithm is based on, is given by the
equation

"�# | �% … �'� � "�#� "��% … �'| #�
"��% … �'�

We obtain the Naïve Bayes classifier by applying the Naïve
or independence assumption to the Bayes theorem. This
assumption denotes that there is anstatistical independence
or no co-dependency between the different features of the
dataset. To obtain the Gaussian Naïve Bayes, we operate
under the assumption that the data is continuous or non-
discreet in nature.

Gaussian Naïve Bayes is a probabilistic model, which is
why the performance of this machine learning algorithm
with the dataset is sub-optimal when compared to the other
machine learning algorithms.

5.2.9. Voting Classifier

Voting classifier is a weighted majority algorithm classifier.
It is an algorithm which is created from the pre-existing
machine learning algorithms. The output is determined by
the weight given to each of them and the higher voted output
is selected. If a wrong prediction is made, then the vote of
that algorithm is reduced.

While Voting Classifier is not a standalone machine
learning classification algorithm on its own, it runs various
other machine learning classifiers given to it and then votes
based on the output obtained. In this implementation of
Voting classifier, “hard” voting is used, where the final
output class label is obtained from the most frequently
produced class labels.This is different compared to “soft”
voting where probability is used to obtain the class label.

5.2.10. Artificial Neural Network

An artificial neural network is made up of multiple layers
with connections in between them similar to a biological
neural network. The first layer is the input layer and the last
is the output layer.The layers in between are called the

hidden layers. Based on the features sent to the input layer,
the layers process the features to identify and classify the
data to the output layer.

The signal path of a neural network is from the input layer,
to the hidden layers and then finally to the output layers.
The path cannot be traced back to the previous layer. Each
layer consolidates features from the input and processes it,
serving as an input to the next layer of nodes.In our
implementation of neural networks, we created three layers
of hidden nodes with 100, 50 and 25 nodes for each layer.
We found this the most optimal in regards to performance,
time taken and accuracy obtained.

6. EVALUATION OF MACHINE LEARNING
ALGORITHMS

Out of the many machine learning algorithms implemented,
to know which one performs the best under different
evaluation criteria, an evaluation is done. The values
obtained are dependent on the implementation as well as the
hardware and software of the platform which executes the
algorithms.

6.1. Size in Memory

Different algorithms consume different sizes in the memory
of the computer. Algorithms which take more space usually
have good performance, whereas those which occupy small
space have relatively less performance. This space-time
tradeoff has certain exceptions.

To measure the space taken by the program in memory, we
first serialize the trained machine into a file and then
measure the size. This is done in order to avoid inaccurate
readings of memory during the runtime execution of an
algorithm as they are highly implementation and platform
specific.Table 1listsmemory consumed by each algorithm.

Algorithm Size in kB
Logistic Regression 62.1
K Nearest Neighbor 27000
Support Vector Machines 8900
Decision Trees 124.1
Random Forest 1400
Extra Trees 2800
Gaussian Naïve Bayes 123.2
Voting Classifier 63100
Neural Network 2000

[Table 1] Size Comparison

It is observed that K Nearest neighbor algorithm takes the
most space in memory since it contains the position of all
elements on a graph so as to find the nearest neighbor. As
the value of k increases, the size also increases. Logistic

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 3; March -2017

 www.ijcrd.com Page 881

Regression takes the least memory, next to which
isGaussian Naïve Bayes, but the former offers much better
scores than the latter.

6.2. Time Taken to Train Machine

Various algorithms take different times to train their
machines. Although this does not determine the time taken
while predicting, it is useful to note this during development
purposes with a large amount of data since a very long time
taken to train machines may prove counter-intuitive.

Algorithm Time in seconds
Logistic Regression 34.2
K Nearest Neighbor 0.164
Support Vector Machines 3.78
Decision Trees 0.707
Random Forest 0.42
Extra Trees 0.382
Gaussian Naïve Bayes 0.062
Voting Classifier 0.6101
Neural Network 26.13

[Table 2] Timing Comparison

From the table 2, we can infer an indirect proportionality
between the space consumed and the time taken for
execution. Logistic Regression takes the largest amount of
time for training its machine and Gaussian Naïve Bayes
takes the least time, though K nearest neighbor which comes
next has a better prediction rate.

6.3. Accuracy or Prediction Scores

The accuracy or prediction scores of machine learning
algorithms are the true measures of how successful a
machine learning algorithm is. The higher the score, better is
the algorithm.

We observed an average of accuracy in the high 80’s to
early 90’s. However, a few algorithms felt short of such an
accuracy, which indicates that these algorithms are not
suitable for use for this particular application. Table 3
shows the accuracy of each machine learning algorithm for a
dataset of 4000 trained elements by using a testing dataset of
400 elements.

Algorithm Accuracy (%)
Logistic Regression 86
K Nearest Neighbor 90
Support Vector Machines 90.5
Decision Trees 72.5
Random Forest 87.25
Extra Trees 90.25
Gaussian Naïve Bayes 54.75
Voting Classifier 91.25

Neural Network 94.5

[Table 3]Accuracy comparison

Fig.10. Accuracy of Machine learning algorithms
Graphs of comparative analysis of various algorithms are as
in Fig.10. It can be inferred that neural network suits optical
character recognition the most, while voting classifier is
next, following which isthe support vector machines.

6.4. Change in dataset size

It is observed that with the change in the size of the training
dataset, the accuracy values also change. The change is not
consistent, that is, accuracy cannot be said to increase or
decrease but depends on the dataset which is used.

7. CONCLUSION

The work presented in this paper involves preparing an
image for the process of optical character recognition as
well as training various classifier machines to process data
and predict information and thereby combining them both to
produce the optically recognized character.

Image processing accomplishes the need of isolating the
data and optimizing the pixels of the image to make it ready
to be used by the machine learning algorithms. The machine
learning algorithms are trained and they are further checked
to ensure that they can be reliably used for predictions.

The basic premise of this project was to successfully
implement the optical character recognition system.
However, since the dataset contained only digits, we
arelimited to 10 classes. If a suitable dataset of all English
characters is present, it could be implemented as well to
obtain a real world OCR system with good accuracy.

The accuracy of certain algorithms can also be tweaked and
improved by subtle variations in the kernels used, or gamma
values, etc. A very impressive 94.5% accuracy is reached
but we believe it can be further improved.

Future scope for this work is working on real time optical
character recognition.

REFERENCES

1. Ivan Dervisevic, Machine Learning Methods for
Optical Character Recognition. 2006

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 3; March -2017

 www.ijcrd.com Page 882

2. Machine Learning Final Project: Handwritten Sanskrit
Recognition using a Multi-class SVM with K-NN
Guidance
[http://people.csail.mit.edu/yichangshih/mywebsite
/sanskrit.pdf]

3. Number Plate recognition System using Matlab
[http://www.slideshare.net/ NamraAfzal /number-plate-
recognition-system-using-matlab]

4. Vanita Jain et. al., Comparative analysis of machine
learning algorithms in OCR .IEEE 2016

5. J. Canny. A computational approach to edge detection.
IEEE trans. PAMI, 8(6):679–698, 1986.

6. T Kasar, J Kumar and A G Ramakrishnan, Font and
Background Color Independent Text Binarization.2007

7. Y.LeCun et.al., Gradient based Learning Applied to
Document Recognition. IEEE 1998

8. Pierre Geurts et.al., Extremely Randomized Trees.
Springer 2006.

9. Gareth James, Majority Vote Classifiers: Theory and
Applications. Stanford Univ.Thesis 1998

10. Wernick, Yang, Brankov, Yourganov and Strother,
Machine Learning in Medical Imaging, IEEE Signal
Processing Magazine, vol. 27, no. 4, July 2010, pp. 25–
38

11. Michie D., Spiegelhalter D. J., and Taylor C.
C., Machine Learning, Neural and Statistical
Classification. Ellis Horwood, 1994

12. Tinku Acharya and Ajoy K. Ray, Image Processing -
Principles and Applications. Wiley InterScience, 2006

13. Wilhelm Burger and Mark J. Burge, Digital Image
Processing: An Algorithmic Approach Using Java.
2008

14. Milan Sonka, Vaclav Hlavac and Roger Boyle, Image
Processing, Analysis, and Machine Vision. PWS
Publishing ,1999

