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Abstract : In the era of big data, interest in gsial and extraction
of information from large data graphs is increasapgace. This
paper examines the field of graph analytics froormewhat of a
query processing point of view. Whether it be deteation of
shortest paths or finding patterns in a data graptching a query
graph, the issue is to find interesting charadiesisor information
content from graphs. Many of the associated dilfjcican be
abstracted to problems on paths or problems onerpatt
Unfortunately, seemingly simple problems, such asdifig
patterns in a data graph matching a query graptsamgrisingly
difficult. In addition, the iterative nature of algthms in this field
makes the simple MapReduce style of parallel andltdeut
processing less effective. Still, the need to ptevanswers even
for very large graphs is driving the research. At trends and
directions for future research are presented.
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. INTRODUCTION

Simply put, Big Data Analytics takes data on an renp-
dentedly large scale to make predictions, findgoatt and enhance
understanding. In the past, the challenge wasedatefobtain data,
but now, and more so in the forthcoming, it willwkat to do with
all the available data. How will the data be storgthred or made
open? How can the right subsets of data be foundi$éposal data
analytics? What progress in algorithms as well amlfel and
distributed implementa-tions will be possible? Tdhallenges for
big data analytics would be overwhelming if not fbe progress
already made in several disciplines: statisticsmenical linear
algebra, machine learning, data mining, graph thegraph
mining, databases and parallel and distributedgssing.

In many cases, the data is numerical in naturec@r be
converted to this form). Often such data is captimea matrix and
used to estimate parameters in a predictive mobtelother
situations, the relationships between data itemghiat is of most
importance. In such cases, the data may be capinradgraph.
Many method have and are being developed for actanalytics
on graphs.

Graph analytics has wide ranging applications imyndiverse

networks and bio-chemistry. Most of these areacharacterized
by solid, and in many cases dynamic graphs. Maagirre tasks in
these domains require analyzing the underlying lgnap various
types of queries. For example, the famous pageakydtithm for
ranking Web search results is in essence a link/sisaal-gorithm,
and it works by iteratively propagating the weigfitspresenting
the importance of Web domains) through the edggsrésenting
the hyperlinks) of a Web graph. As a second examplationship
analysis is a fundamental task in many social ntsvauch as
Facebook, Twitter, and Linkedin. It is used for gesfing
friends/products, and placing advertisements. Relghip analysis
necessarily involves computing paths among the icest
(representing users) in a social network. Fan.dtlhdemonstrate
how identifying suspects in a drug ring can be nedieas a
subgraph pattern search problem. Driving directom-putation
in an online map application (e.g., Google mapsp®izest, etc.),
connectivity monitoring and root cause analysislange-scale
distributed systems, and identification of chemisglictures and
analysis of biochemical tract in biological sciemcare other
examples of tasks requiring graph analytics.

Traditional graph computation algorithms, many dfieh are
highly sequential in nature do not scale well teetively support
massive graphs. Two distinct approaches have beesugd in
recent years to overcome the limitations of tradéil graph
analytics (a) designing paradigms to distribute domputation
among the machines of a shared nil cluster anddbigning smart
indexing techniques for on-demand execution of lgrgperies.
While MapReduce (MR) is a favorite cluster compgtparadigm,
it is not well suited for graph analytics becausany graph
analytics tasks are iterative in nature. Recendjternative
paradigms based on the Bulk Synchronous ParallesP}B
programming model [2] have been proposed. Theskdacthe
“think like vertex” paradigm (exemplified by systerike Pregel
[3], Giraph [4] and GPS [5]) and the “think likeagrh” paradigm.
Many indexing schemes have been proposed for \atigpes of
graph queries including dif-ferential constitutiand G-String [6]
(for pattern matching queries) and 2-Hop [7], GR[BPand Dual-
labeling [9] (for reachability queries).

Despite these recent in advance, scalable gragitiasds still

challenging on multiple fronts. First, designingadkel

domains such as World Wide Web (WWW) data managEmengraph algorithms whether in the vertex-centric cap centric

Internet and overlay management, road net-workmesocial

paradigms is not unambiguous; certain problems sscsubgraph
pattern matching are notoriously difficult to pdehte. Second,
the performance of cluster-based graph computétioneworks is
dependent upon multiple factors such as vertexiloliston among
compute nodes, character-istics of the algorithmterms of
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whether the computation is confined to subsetsoafipute nodes
at various stages of the computation, and commmagnd

communication capabilities of the cluster. Managihg inherent
tradeoffs among these diverse factors so as teceaehtlose to
optimal performance is a evidential challenge. @dhimany of the

existing graph indexes are brickle with respecgraph changes,
and hence are not cost-effective for dynamic graftmis, for

dynamic graphs, it is necessary to design indegatngmes that are
more flexible and resilient to graph changes. Fguimh many

applications such as Linked Open Data, the grapta da

geographically distributed (for example, in mukéiplata centers).
This adds an additional layer of complexness. To best

knowledge very few of the existing research effadasider data
that is split amongst multiple locations.

The rest of this paper is organized as result:i@edt provides
basic definitions and outlines key problems indbenain of graph
analytics. Current and future applications of graptalytics are
discussed in section lll. Procedure models and draonks used
for efficient parallel and dis-tributed implemendails are
discussed in section IV. Finally, section V conésdhe paper.

I[I. GRAPH ANALYTICS

When relationships between data items take cetagege.g.,
social networks), big data analytics often takes fhrm of graph
analytics, in which the data items are repre-sergedlabeled
vertices, and the relationships as labeled edgasyNjroblems in
graph analytics may be developed in terms of
multidigraphs. A labeled multidigraph allows mulépdirected
edges between any two vertices, so long as thegifieeentiably
labeled. More formally, a la-beled multidigraph mag delimited
as a 4-tuple G(V; E; L; I) where

V = set of vertices

E —-SV*WVAiL (set of labeled edges)
L =set of labels
l:V—>L (vertex labeling function)

The link between vertices are characterized by taofeedges.
When not considering edge labels, E V V and thetidigiaph
becomes a digraph. For a digraph, uv 2 E meanttiese is a
directed edge from vertex u to v. The same notatidhbe used
for multidigraphs, rather than the more detailedd gorecise

projection uv 21 (E).
A simple mode to characterize the connectivitynigerms

of children and parents, as defined by the follgntwo set-
valued functions.

child(u) = fv: uv 2 G:Eg
parent(u) = fw : wu 2 G:Eg

Many of the problems in graph analytics involvediitg
paths, patterns or partitions in very large datapbs (e.g.,
graphs with a billion edges). These problems arengty
interrelated. A path may be viewed as a simplealirgattern
and partitioning is needed for both path and patpgoblems,
when graphs become too large to stock or process gingle
machine or single thread.

A. Path Problems

1) Reachability: Path problems involve asking question
about paths between vertices in graph G. The shjide
given two vertices, u; w 2 G:V , find a path (sétedges)
connecting them.

path(u; w) = uylis ; vavaliz .... VaWljne1 2 GIE
This can be generalized to return all paths betweand

a-paths(u; w) = fp : p = path(u; w)g

The statement may also be generalised to setstifese
Reachability is simply

reach(u; w) = 9path(u; w)

Reachability analysis has applications in many doma
including XML indexing and querying, homeland seétgyr
navigation in road networks and root causes arglgdiarge-scale
overlay-based distributed systems. A straight-fodaapproach to
this problem is to do an on-demand traversal (kheficst or
depth-first) on the graph. However, graph traveisaD(v + e)
where v (e) is the number of vertices (edges) & dhaph. This
makes traversal-based approaches unsuitable fprangre graphs
especially when the query loads are high. An adtierchoice is to
compute the Transitive Closure (TC) of the grapht BBe storage
costs of TC are too high (O(v2)). To address thesees, several
indexing-based approaches have been proposed. @ésdme

labele suggests, these approaches rely upon certain isderenetimes

stored in a relational database) for speeding epréachability

query evaluation. The in-dexes are constructeddaygda breadth-
first or depth-first traversal (a one-time costhdaharnessed to
answer many reachability queries. Examples of iduksed

reachability analysis include 2-Hop, Duallabeliagd Gripp.

Future Directions: While reachability analysis itat& graphs
has received considerable research attention ientegears,
surprisingly, there is very little work on reachdianalysis in
dynamic (time-evolving) graphs. Many of the ap-mtoes cannot
be extended to dynamic graphs in a straight-forwarahner
because they are too brittle to handle graph clsanlye other
words, even minor changes in the graph require irmapdates to
the index structures. Developing robust reachgbibinalysis
frameworks for dynamic graphs poses many importhatlenges.
First, there can be multiple temporal classes amability queries
including version-specific reachability queries @b reachability
testing is done a specific version of the graphyeise version-
specific queries (finding the first/nth/all vers{sh gratifying a
given reachability test) and continual reachabidjtyeries (trigger
queries that require continuous monitoring of reddlity status).
Each class has unique requirements and hence mesdsdistinct
approaches. Second, the straight forward ap-proacé-indexing
the graph on every change is very costly, and hanpeactical.
Thus, we need a framework that manages the tralpeffveen the
indexing costs and query latencies. Third, we nieetler (and
probably simpler) indexing strategies that can hereamentally
maintained as the underlying graph changes. Fouortst of the
existing studies on reachability analysis use Relat Databases
(RDBs) or main-memory indexing structures. Howeussth of
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them have inherent limitations. While traditionaDBs are often
too bulky (and thus perform poorly specially fogasting large
amounts of indexing data), main memory indexingesebs are
limited by the main-memory avail-ability. An impartt and
interesting question in this regard is whether megesearch on
No-SQL databases such as Cassandra, BigTable, \Déhgmd
DynamoDB can be harnessed for storing reachafiligxes.

In two recent research projects we demonstrated kusv
interval-based indexing paradigm can be extendedafiswering
shapshot-specific and continuous reachability gseimn dynamic
hierarchies and graphs [10], [11]. How-ever, wedwel that the
research on reachability analysis in impulsive ggafs in very
nascent stages, and much more work needs to betdadzress
the above challenges.

Finding paths constrained by a formal language, imere
labels of edges forming a path must form a strimgnfa formal
language over an alphabet , have recently gaingdifisant
attention This can involve a single path (e.g.r&sb) or all paths
between u and w. The problem of finding simple patbnstrained
by regular expressions has been studied quite siviely [12],
[13]. Formal language constrained graph problem®wéscussed
in [14], who showed that shortest path problemsmtonstrained
by a context-free language can be solved in polyalotime.
However, finding simple paths between a source angdiven
destination, constrained by a regular languaghl, B-hard, unless
the graph itself is treewidth bounded, when it &ensolved in
polynomial time.

More research is needed in this area, especialiggard to very
large and distributed graphs, including the vemgdadata sets
within the Linking Open Data project, discussedsettion I1.B,
later in this paper.

Shortest Path: The purpose of shortest path prabieno find a
path with the minimum distance (cumulative edgeghbi that
includes all k vertices in the path. Versions exfst both directed
and undirected graphs. When k = 2, Dijkstra’s Aigpon [15] or
the Bellman-Ford algorithm

may be used. For a digraph, let the edge labeké@mesent an
edge weight, then given vertices u and w, find tstpa

For k = 3, three applications of Dijkstra’s Algdmih (or
equivalent) will suffice to find the short path cmtting all three
vertices. The all-pairs short path problem [17&lso of interest in
Big Data Analytics.

B. Pattern Problems
A simple and common form of pattern query, is tceta query
graph Q and match its labeled vertices to corredipgnlabeled

vertices in a data graph G.

pattern(Q; G) = : Q:V ! 2G:V such that
8u0 2 (u); I(u0) =I(u)

One may think of vertex u in the query graph Q hg\a set of
corresponding images fuOig in the data graph G.

Graph Simulation: In addition to the labels of thertices
matching, patterns of connectivity should matchval; e.g., child
match. Given, a possible match between u 2 Q:Vuina (u), it is
accepted iff for each vertex v in child(u) theraigertex in (v) that
is present in child(u0) as well.

matchc(u; u0) = 8v 2 childQ(u); 9v0 2 (v) suchtth@v0 2 G:E

Algorithms for graph simulation typically work aslflows: For
each vertex u 2 Q:V , initially compute the mapps®g (u) based
on label matching. Then, repeatedly check the chmidtch
condition, matchc, for all vertices to refine theiapping sets until
there is no change. For example, in Figure 1, R@G; 7Gg, so
both ver-tices must undergo a child match, matd@¢(2G) and
matchc(2Q; 7G). The matchc(2Q; 7G) condition isleeded as
follows:

matchc(2Q; 7G) = 8v 2 f1Q; 3Q; 4Qg; 9v0 2 (v) stiwdt 7GvO
2 G:E The matchc is true, since 8G 2 (1Q) and 7Q&8E, 5G 2
(3Q) and 7G 5G 2 G:E, and 9G 2 (4Q) and 7G 9G 2 G:the
matchc evaluated to false, vertex 7G would be readdrom (2Q).

Similarly, one may wish to match parents. Giverpassible
match between u 2 Q:V and u0 2 (u), it is accejiffetbr each
vertex in w in parent(u) there is a vertex in (Wattis present in
parent(u0) as well.

Figure 1. An Example for explaining the graph simulation aitjon
0. 0 00
matchy(u; u”) = 8w 2 pareng(u); Sw 2 (w) such that v
2GE
When the connectivity constraint is matchthe pattern
matching model is referred to as graph simulati@8],[

while when both matghand match are used it is referred
to as dual simulation [19].
To further restrict the matches, one may wish tioniehte

solutions that contain large cycles which are pwesto appear
with dual simulation. Various locality restrictionsay be added to
dual simulation for this purpose. For strong sirtiata[19], any
solution (match in G) must fit inside a ball of nasl equal to
diameter of the query graph Q.

Strict simulation [20] is based on strong simulafibut
applies dual simulation first to reduce the numdieballs.
This also reduces the number of solutions.

A further restriction that reduces the number dfsband
makes the balls smaller, is called tight simulafiah]. First
the center of the query graph Q, call 4t is found and then

balls are created for u2 (). In addition, the radius of
these balls is equal to the radius, not the diamefethe
query graph.

Tight simulation can be modified to produce resualsser to
subgraph isomorphism by using cardinality reswitsi on child
and parent matches to push results towards onedo-0
correspondences. This modification is referred $oCardinality
Restricted (CAR)-tight simulation [22]. For magth; uO) to be
true, in addition to the constraints for tight slation, the child

count for each label must be at least as largeddex L? 2G:Vas
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it is for vertex u 2 Q:V . For example, while tighimulation

evaluates mateh (20; 13c) to true, as 14 is used to match both
of 2g's children, CAR-Tight simulation evaluates it talde, as
14 has only one C-labeled child, while vertex Ras two.

direction, replacing uw; wv 2 G:E with uv, so loag w is

connected to nothing else (indegree(w) = outdegnee(1).
Table Il shows the complexity results for the ngraph pattern

matching models discussed. The ones based on grapltation

2) Graph Morphisms: More complex and often more2® in P, while those based on morphisms are Nré@-ffae table

constrained forms of pattern matching occur whesom-
plete correspondence between edges is required.

match(Q; G) = 8w 2 QE: 0’2 (U (v
This requires that for any edge uv_|2_ Q:E, theretrhas

GE

. 00
a corresponding edgew 2 (u) (v)
) set-valued function may be decomposed into afsetapping

functions ff( )g that map a vertex u 2 Q:V to a vertexaiG:V
. This form of pattern matching is called graph lbomrphism

[23]. If we further require the mapping functiorfg f)g to be
bijections between Q:V and &/ , where G is a subgraph of

G (G G), then the form of pattern matching is calledgaph
isomorphism

[24]. (Some authors make a distinction between subgrap

isomorphism and graph monomorphism (injective magpi by
requiring for subgraph isomorphism tha? ® be induced by the
selected vertices, i.e., include all edges haviath lendpoints in

GO:V [25].) The difference between graph homomorphiand
subgraph isomorphism is that the former requiresreespondence
between vertices, while the latter requires a @nRere
correspondence.

According to [26], the tightest upper bound known f
such pattern matching algorithms is

also indicates the containment hierarchy. In mases the results
of one model are strictly contained within thataofother. In some
cases, they are incomparable, e.g., CAR-tight sitiari and graph
nigues to improve their response time is an adield of research.
An important technique is design and imple-mentatiof
distributed algorithms to harness the power of Baga platforms

G:E. In such case, the ( for this purpose [30], [20]. Also, a very recentethd of research

investigating usage of view and caching technioquiéls respect to
pattern queries [31],

[22]. Moreover, real-world data graphs are evolving owere;

i.e., there are minor changes in their structureugh the time.
Hence, it should be possible to design incremeadtgrithms for
pattern problems in many applications [32].

h Another area of research involves situations whene is

interested in incomplete or inexact matches of QGn For
example, one could find maximum (or maximal) partiatches of
Q in G. Maximum can be measured in terms of missartjces or
missing edges. The former problem is titled Maxim@@mmon
Subgraph (MCS), while the latter is called Maxim@ommon
Edge Subgraph (MCES). A graph C is a common subgtap
graphs Q and G, when it is isomorphic to subgraplesch.

common(Q; G) = C such that C isomorphic t%a@ld é)

No
O(NQNG ) where (8 Q and C? G. An MCS is a common subgraph with the
where Ny = v + &g (the number of vertices and edges inmaximum number of vertices [33], while an MCES iscanmon

the query graph) andd®= vg + ez (same for data graph).
As query graphs increase in size, the complexitpaifern
matching goes up quickly. Unless there is a fixgxban

bound on N, finding subgraphs matching the query grap

is N P-hard.

Figure 2 shows an example of a query graph Q atel gtaph
G, and all eight forms of figure matching. In theample, loosely
inspired from Amazon’s product co-purchasing nelyoif a
poduct familty u is frequently co-purchased witloghuct family v,
the graph contains a directed edge uv from vertég u. Here,
each letter inside the vertex is the category ef pihoduct and
represents its label. Moreover, each number besideertex
represents its ID number. The subgraph matchingltsesf this
example are displayed in Table I. For the first twas, the set-
valued function is given, while for the next fouesults are
segmented into balls, and for the last two, mappimgtions are
given. The column Count displays the total numbewvertices
appearing in the results.

A more flexible type of morphism called graph homeo

morphism [27] can be thought of as representingpa-togical
match. The idea is that is does not matter whetketices u
and v are connected directly, i.e., uv 2 G:E orireadly. A

sequence of edge subdivision and smoothing opesatian be
performed as part of the topological match. Sulsitivi occurs
when a vertex w 2 G:V is inserted between u angplacing

subgraph with the maximum number of edges

[34]. These types of pattern matching are not the foéus o

this paper, but the following paper [35] providegy@od

psurvey.

The long term trend for research in graph pattern imagds to the
attack the problem of N P-hardness (e.g., Subgrapholgimsm and
Graph Homomorphism, see Table Il) from two directioBffective
techniques for indexing, ordering evaluations andnipg away
vertices have provided huge speed-up, e.g., contharperformance
recent algorithms, Duallso [36] and Turbolso [37], tottbé the
original algorithm for subgraph isomorphism, Ullmasi&lgorithm
[24]. The other direction, is to create more sophistitate
polynomial algorithms that produce results more selp
resembling the results produced by Subgraph Isonigmp As
shown in Table I, the move from graph simulationit@l to strong
to strict to tight to CAR-tight simulation, illusttes the progress in
this research direction. Although more complex, eriension
beyond dual simulation to also check grandchildoauld be
tested. Many combinations of checking grandchildréor
grandparents) could be added to all the simulationdels
described above. The polynomial-time algorithmsetigyed could
be closer to the results produced by subgraph igamsm.
Unfortunately, provid-ing absolute or relative errbounds is
complicated by the fact that related inexact pnoitsiéike MSC and
MCES are Approximable APX-hard [38]. The other awerns to

the edge uv with uw and wv. Smoothing goes the rothe
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apply more computational power through parallel dredributed
technigues, see section IV.

I11. APPLICATIONS
A. Graph Databases

Graph databases [39] have existed form some timreceRtly,
with the emergence of NoSQL databases [40] astamative to
traditional Relational Databases for big data apions requiring
greater storage and performance, graph databakesy aith
document databases, are gaining in momentum. Sdmieo
popular graph databases are Neo4j [41], OrientD §hd Titan
[43].

In this paper, the focus is not on graph databdsésrather how
advances in graph pattern matching could be usegtaph database
engines to better query processing. Neodj supposts tuery
languages Cypher and Gremlin [44]. Consider the foligngquery in
the Cypher language.

MATCH (x: Lawyer, y: Doctor, z: Lawyer,
x-[:FRIEND]->y,
X-[:COMPETES_WITH]->z,
y-[:FRIEND]->z)

Given two lawyers and one doctor, where the fiestyler is a
friend of the doctor and competes with the secavdyér, whom
the doctor is friends with, find all (or a suffioie number of)
occurrences of the query graph in the large daphgr making up
the graph database. Typically, graph database cgregines will
solve such pattern matching queries using (i) <afdgr
isomorphism, (i) graph homo-morphism or (i) ghap
homeomorphism algorithms.

GraphQL [45] defines graph pattern matching in teoh
subgraph isomorphism. The paper defines a fundiimilar
to ours, but generalizes to matching a predicgteather
than a label |. Given a vertex u 2 Q:V , the initieatches in
G are defined as follows:

W = : L2 Vv:G and Vg

are quad stores, as RDF data sets may includepteudfiaphs and
the graph to which a triple belongs is the foul#dment, making
it a quadruple. SPARQL is the query language foFFRiata sets,
recommended by the World Wide Web Consortium. Tterple
Cypher query from section IlI.LA looks very similawhen
expressed in the in the SPARQL query language:

There has been a considerable amount research contiucted
optimize query engines for processing SPARQL gserie
[48]. Much of the progress involved development of sophis
ticated indexing strategies and graph-based storageels.
Recently, a Linking Open Data (LOD) project [49]shheen
innitiated to provide a method of publishing a eari of
structured data sets as interlinked RDF data Astaf 2014, the
LOD project comprised 1014 interlinked RDF datas sgtanning
a multitude of knowledge areas, such as life se@sngeographic,
government, social networking, publications, mediand
linguistics. At the center of it is DBpedia, an Rb#presentation
of the Wikipedia, which is interlinked with a highumber of
other data sets. Overall, the size of the intedéhRDF graph in
the LOD cloud is measured in tens of billions of RBiples and
therefore edges (over 80 billion as of this wri)ing

As the sizes of individual RDF data graphs contitm@row
dramatically, optimization of processing of SPARQjueries
becomes even more important, especially in viewhefneed for
complex, hypothesis-driven [50] and analytics-edatqueries.
Much effort must be dedicated to distributed preses of
SPARQL queries [51], [52]. Furthermore, processififederated
SPARQL queries (introduced in SPARQL 1.1) on thebLgraph
is challenging and requires vigorous research.

As the individual data sets dramatically increassize, RDF
graph partitioning and its impact on distributed-pessing of
SPARQL queries and RDF graph analytics [53] isighificant
importance. SPARQL query processing was formulatettrms
of subgraph isomorphism and related to graph datsben [54].
A SPARQL implementation based on graph homomorphsm
given in [55]. Even though SPARQL’s OPTIONAL grapasd

The pattern matching algorithm used in GraphQLtfirs the UNION operator offer much flexibility in quefgrmulation,

computes for all vertices in Q (these are calle fdasible
mates) and then narrows down the choices by chgdkia
correspondence of edges.

The GrGen [26] uses graph homomorphism to matchyque

and data graphs. Although graph pattern matchiregigs are
much faster in graph databases than in relatioatdbdses
[44], current and new research ideas could be purated for
further speed-up. Graph databases can also bdrafit the

considerable amount of research performed on indexi

techniques [46].

B. Semantic Web

The concept of Semantic Web has been introducédrbyBerners-
Lee as an evolution of the World Wide Web to enalaita sharing and
reuse “across application, enterprise, and communpitydaries”. The
Semantic Web is supported on a number of standardsiding the
Resource Description Framework (RDF), the Web Ontolagyguage
(OWL) and SPARQL. Conceptually, data encoded using B

While many implementations of RDF triple-storesyran
some form of a relational database, in some cd&B§, triple-
stores are organized as graphs [47]. Some othetémentations

many RDF ana-lytics tasks may be expressed mudereagh
the addition of a other query types. For examplewill be
important to include query forms based on graphukition and
other graph morphisms discussed in section Il.Bickvtare not
directly available in SPARQL. This will require ptding
additional query forms and/or relaxing the striatbgraph
isomorphism semantics of the current query language

C. Social Networks/Media and Web Mining

Graphs are employed heavily in online social netkstmedia
. (Facebook, Twitter, LinkedIn, etc.) and online ilets
(e.g., Amazon). The reason for this popularityhigt tgraphs
offer a natural way of representing various kindisetationships
that are important for these applications. Thenfighip graph in
Facebook, the follower graph in Twitter, endorsemgraph in
LinkedIn and product affinity graph in Amazon apere examples
of social network and media graphs. The charatiesisand
properties of graphs vary significantly from onepligation to
another. For example, the follower-following retetship graph in
Twitter is a directed graph with various users tasvertices. A
directed edge from vertex u to vertex v signifiesttthe user
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represented by u is a follower of user v. Note tmaist of the
graphs in most online social
organization are not only massive but also dynamic.

Social media companies are keen to derive busingdigence
by running various kinds of analytics on these bgaComputing
various path related statistics is among the mostneon type of
graph analytics. For example, social networking panies are
interested in finding the most “influential” persoamongst their
user-base. A popu-lar metric for quantifying infige is the
number of vertices within n hops of a given persdmus,
computing the exact/approximate number of n-hoght®rs of all
or a subset of vertices is a common analytics tedkrestingly,
there are two problems embedded in this task — atingp the
number of n-hop neighbors from scratch and maiirtgirthe
statistics as the graph undergoes changes. A varfidhnis problem
is to estimate the influence as a weighted sumebm neighbors
(for instance, Influence(v) =

# of |-hop vertices ) ) )
). In this equation, the contribu-

tion of a vertex tJo the influence score of anothetex diminishes
as the distance between them increases.
employed path-related graph analytics tasks ineluda)
computing shared n-hop neighbors between a giveropeertices
(used for suggesting friends), (b) computing onemarre paths
between a given pair of vertices (for illustratihgw a suggested
friend is related to a given user), and (c) commutigraph
centrality measures.

Graph pattern matching queries are also populaoéml media
applications. Besides the relatively controlled isrvments
provided by graph databases and their cousins Riple-stores,
there is a great deal of interest in graph patteatiching in social
networks/media and mining the Web in general. Asted out by
[56], the data in such contexts are more noisy,thad exact
matching, particularly of complex topology, may less useful
than inexact matching. For these types of appboati some form

Other colyyimo

like Hadoop [61], put such capabilities within thands of many

networks and e-comenerc programmers. Unlike the Message Passing Interfd&d)(, only a

limited amount of specialized training is needelde Pprovision of
fault-tolerant execution and a high-performancetritiisted file
system further makes programming easier. Typically{adoop,
data is read from the Hadoop Distributed File Sys(eIDFS) by
mappers based on a key values and written backDBS;1 and
read by reducers, merged and again written back.

More complex algorithms, particularly iterative algthms, are
less amenable to the basic MapReduce style. Apatdhren [56] is
similar to Hadoop, but focuses on more efficientean
processing, allowing data to be sent directly frone worker to
another. Apache Spark [64] maintains intermediaseilts in main
memory to reduce the number of slow page transéeend from
secondary storage and thereby, speed up compwati@toop 2
[53] adds the YARN resource manager, so that gihegramming
models in addition to MapReduce can be supported.

An alternative to dividing computations into mappeand
reducers for iterative algorithms, is to divide gortations into a
series of supersteps that involve receiving inpuéssages,
performing computations and sending output messsage
Synchronization is system provided, since a tasktmait for all
tasks within a superstep to complete, before mognghe next
superstep. This approach was made popular with Bulk
Synchronous Parallel (BSP) [2]. In cases, wherertheber of
superstep is not too large and work is well baldnamong the
tasks, BSP can be quite useful for implementingly@gorithms.

A special form of BSP, called vertex-centric, hascdime
popular for big data graph analytics. In this pesgming model,
each vertex of the graph is a engineering unit fwhis
conceptually a task in BSP. Each vertex initialiows only about
its own status and its outgoing edges. Then, \e=t@an exchange

of graph simulaton may be more useful than subigrap messages through successive supersteps to learheduh other.

isomorphism.

For such applications, the use of graph homomonphis
discussed in [57]. Graph homomorphism is more filexithan
subgraph isomorphism, as stated in Khan et al, 20d3ontrast
to strict one-to-one mapping as in traditional sapb
isomorphism tests, we consider a more general r@aone
subgraph matching function. Indeed, two query nadey have
the same match” [56]. Beyond that, the work repbitethe paper
also relaxes the strict label matching used in mjly
isomorphism [56]. Relaxations to both graph homgh@m and
subgraph isomorphism are presented in [50]. Théchdea is
similar to that of graph homeomorphism in whichealge in one
graph is mapped/matched to a path in the otherhgiagdorm of
graph homeomorphism where edges are mapped toesipaphs
matching a regular expression is discussed in [51].

IV.COMPUTATIONAL MODELSAND
FRAMEWORKS

For problems that have a few well-defined phases
computations, MapReduce style computations proaideeans for
highly parallel execution in large clusters withndueds or more
machines [60]. Some classical examples are wordntoay
statistics such as means and variances, and palgeHr@ameworks,

When a vertex believes that it has accomplishethgks, it votes
to halt and goes to inactive mode. When all vestibecome
inactive the algorithm terminates. Several framéw@upport this
style of pro-gramming including Pregel [3], GPS E5]d Giraph
[4].

Although the BSP computing model can be succe$g-fided
for graph, dual, strong, strict, tight, CAR-tighimsilation, our
work has found significant overhead in the synctmation. This is
particularly true in the latter supersteps when ynainthe vertices
have dropped out of the calculation. To obtaindvgterformance,
one may resort asynchronous frameworks such ashGahp[66]
and GRACE . Unfortunately, this approach puts mu¢hthe
burden for synchronization back on the programmer.

Future research may pursue two research directionsst, Fi
combining the ease of programming and high scatalpbtentials of
BSP, with the performance advantages of asynchronmgggmming
should be explored. Second, effective combinationmufiti-core
parallel programming with cluster-based distributed gpaoming,

ofwvith minimal quality overhead should be chased dk we

V. CONCLUSIONS

With the increasing importance and growing sizgraph stores
and databases, recent research activity has ircteabstantially.
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Advancement has also been substantial, but manjlacbas
remain for future research.
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