
International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 6;June  -2017 

                                                                                               www.ijcrd.com Page 771 

 

Graph Analytics for Big Data  
 
 
 

Kavitha S N 
Department of MCA  

New horizon college of engineering  
Bangalore, Karanataka   

 
 
Abstract : In the era of big data, interest in analysis and extraction 
of information from large data graphs is increasing apace. This 
paper examines the field of graph analytics from somewhat of a 
query processing point of view. Whether it be determination of 
shortest paths or finding patterns in a data graph matching a query 
graph, the issue is to find interesting characteristics or information 
content from graphs. Many of the associated difficulty can be 
abstracted to problems on paths or problems on patterns. 
Unfortunately, seemingly simple problems, such as finding 
patterns in a data graph matching a query graph are surprisingly 
difficult. In addition, the iterative nature of algorithms in this field 
makes the simple MapReduce style of parallel and dealt out 
processing less effective. Still, the need to provide answers even 
for very large graphs is driving the research. Advance, trends and 
directions for future research are presented. 
 

Keywords 
big data; graph analytics; graph databases, Se-mantic Web, social 
networks, graph paths, graph patterns; 
 
I. INTRODUCTION  

Simply put, Big Data Analytics takes data on an unprece-
dentedly large scale to make predictions, find patterns and enhance 
understanding. In the past, the challenge was to create/obtain data, 
but now, and more so in the forthcoming, it will be what to do with 
all the available data. How will the data be stored, shared or made 
open? How can the right subsets of data be found for disposal data 
analytics? What progress in algorithms as well as parallel and 
distributed implementa-tions will be possible? The challenges for 
big data analytics would be overwhelming if not for the progress 
already made in several disciplines: statistics, numerical linear 
algebra, machine learning, data mining, graph theory, graph 
mining, databases and parallel and distributed processing.  

In many cases, the data is numerical in nature (or can be 
converted to this form). Often such data is captured in a matrix and 
used to estimate parameters in a predictive model. In other 
situations, the relationships between data items is what is of most 
importance. In such cases, the data may be captured in a graph. 
Many method have and are being developed for activity analytics 
on graphs.  

Graph analytics has wide ranging applications in many diverse 
domains such as World Wide Web (WWW) data management, 
Internet and overlay management, road net-works, online social  

 
 
 

 
 
networks and bio-chemistry. Most of these area are characterized 
by solid, and in many cases dynamic graphs. Many routine tasks in 
these domains require analyzing the underlying graph via various 
types of queries. For example, the famous page rank algorithm for  
ranking Web search results is in essence a link analysis al-gorithm, 
and it works by iteratively propagating the weights (representing 
the importance of Web domains) through the edges (representing 
the hyperlinks) of a Web graph. As a second example, relationship 
analysis is a fundamental task in many social networks such as 
Facebook, Twitter, and LinkedIn. It is used for suggesting 
friends/products, and placing advertisements. Relationship analysis 
necessarily involves computing paths among the vertices 
(representing users) in a social network. Fan et al. [1] demonstrate 
how identifying suspects in a drug ring can be modeled as a 
subgraph pattern search problem. Driving direction com-putation 
in an online map application (e.g., Google maps, MapQuest, etc.), 
connectivity monitoring and root cause analysis in large-scale 
distributed systems, and identification of chemical structures and 
analysis of biochemical tract in biological sciences are other 
examples of tasks requiring graph analytics.  

Traditional graph computation algorithms, many of which are 
highly sequential in nature do not scale well to effec-tively support 
massive graphs. Two distinct approaches have been pursued in 
recent years to overcome the limitations of traditional graph 
analytics  (a) designing paradigms to distribute the computation 
among the machines of a shared nil cluster and (b) designing smart 
indexing techniques for on-demand execution of graph queries. 
While MapReduce (MR) is a favorite cluster computing paradigm, 
it is not well suited for graph analytics because many graph 
analytics tasks are iterative in nature. Recently, alternative 
paradigms based on the Bulk Synchronous Parallel (BSP) 
programming model [2] have been proposed. These include the 
“think like vertex” paradigm (exemplified by systems like Pregel 
[3], Giraph [4] and GPS [5]) and the “think like graph” paradigm. 
Many indexing schemes have been proposed for various types of 
graph queries including dif-ferential constitution and G-String [6] 
(for pattern matching queries) and 2-Hop [7], GRIPP [8] and Dual-
labeling [9] (for reachability queries).  

Despite these recent in advance, scalable graph analytics is still 

challenging on multiple fronts. First, designing parallel 
 
graph algorithms whether in the vertex-centric or graph centric 
paradigms is not unambiguous; certain problems such as subgraph 
pattern matching are notoriously difficult to parallelize. Second, 
the performance of cluster-based graph computation frameworks is 
dependent upon multiple factors such as vertex distribution among 
compute nodes, character-istics of the algorithm in terms of 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 6;June  -2017 

                                                                                               www.ijcrd.com Page 772 

 

whether the computation is confined to subsets of compute nodes 
at various stages of the computation, and computation and 
communication capabilities of the cluster. Managing the inherent 
tradeoffs among these diverse factors so as to achieve close to 
optimal performance is a evidential challenge. Third, many of the 
existing graph indexes are brickle with respect to graph changes, 
and hence are not cost-effective for dynamic graphs. Thus, for 
dynamic graphs, it is necessary to design indexing schemes that are 
more flexible and resilient to graph changes. Fourth, in many 
applications such as Linked Open Data, the graph data is 
geographically distributed (for example, in multiple data centers). 
This adds an additional layer of complexness. To our best 
knowledge very few of the existing research efforts consider data 
that is split amongst multiple locations.  

The rest of this paper is organized as result: Section II provides 
basic definitions and outlines key problems in the domain of graph 
analytics. Current and future applications of graph analytics are 
discussed in section III. Procedure models and frameworks used 
for efficient parallel and dis-tributed implementations are 
discussed in section IV. Finally, section V concludes the paper. 
 
 
II. GRAPH ANALYTICS 
 

When relationships between data items take center stage (e.g., 
social networks), big data analytics often takes the form of graph 
analytics, in which the data items are repre-sented as labeled 
vertices, and the relationships as labeled edges. Many problems in 
graph analytics may be developed in terms of labeled 
multidigraphs. A labeled multidigraph allows multiple directed 
edges between any two vertices, so long as they are differentiably 
labeled. More formally, a la-beled multidigraph may be delimited 
as a 4-tuple G(V; E; L; l) where 
 
 

V = set of vertices  
E →V*V*L (set of labeled edges) 

(1) 
L = set of labels  
l : V → L (vertex labeling function) 

 
The link between vertices are characterized by a set of edges. 

When not considering edge labels, E V V and the multidigraph 

becomes a digraph. For a digraph, uv 2 E mean that there is a 
directed edge from vertex u to v. The same notation will be used 

for multidigraphs, rather than the more detailed and precise 

projection uv 2 12(E). 

A simple mode to characterize the connectivity is in terms 
of children and parents, as defined by the following two set-
valued functions. 
 

child(u) = fv : uv 2 G:Eg  
parent(u) = fw : wu 2 G:Eg 

 
Many of the problems in graph analytics involve finding 

paths, patterns or partitions in very large data graphs (e.g., 
graphs with a billion edges). These problems are strongly 
interrelated. A path may be viewed as a simple linear pattern 
and partitioning is needed for both path and pattern problems, 
when graphs become too large to stock or process on a single 
machine or single thread. 

 
A. Path Problems  

1) Reachability: Path problems involve asking questions 
about paths between vertices in graph G. The simplest is 
given two vertices, u; w 2 G:V , find a path (set of edges) 
connecting them.  

path(u; w) = uv1li1 ; v1v2l i2 …. vnwl in+1 2 G:E 
 

This can be generalized to return all paths between u and  
w . 
 

a-paths(u; w) = fp : p = path(u; w)g 
 
The statement may also be generalised to sets of vertices. 
Reachability is simply 
 

reach(u; w) = 9path(u; w) 
 

Reachability analysis has applications in many domains 
including XML indexing and querying, homeland security, 
navigation in road networks and root causes analysis in large-scale 
overlay-based distributed systems. A straight-forward approach to 
this problem is to do an on-demand traversal (breadth-first or 
depth-first) on the graph. However, graph traversal is O(v + e) 
where v (e) is the number of vertices (edges) in the graph. This 
makes traversal-based approaches unsuitable for very large graphs 
especially when the query loads are high. An alternate choice is to 
compute the Transitive Closure (TC) of the graph. But the storage 
costs of TC are too high (O(v2)). To address these issues, several 
indexing-based approaches have been proposed. As the name 
suggests, these approaches rely upon certain indexes (sometimes 
stored in a relational database) for speeding up the reachability 
query evaluation. The in-dexes are constructed by doing a breadth-
first or depth-first traversal (a one-time cost), and harnessed to 
answer many reachability queries. Examples of index-based 
reachability analysis include 2-Hop, Duallabeling, and Gripp. 

 
Future Directions: While reachability analysis in static graphs 

has received considerable research attention in recent years, 
surprisingly, there is very little work on reachability analysis in 
dynamic (time-evolving) graphs. Many of the ap-proaches cannot 
be extended to dynamic graphs in a straight-forward manner 
because they are too brittle to handle graph changes. In other 
words, even minor changes in the graph require massive updates to 
the index structures. Developing robust reachability analysis 
frameworks for dynamic graphs poses many important challenges. 
First, there can be multiple temporal classes of reachability queries 
including version-specific reachability queries (where reachability 
testing is done a specific version of the graph), inverse version-
specific queries (finding the first/nth/all version(s) gratifying a 
given reachability test) and continual reachability queries (trigger 
queries that require continuous monitoring of reachability status). 
Each class has unique requirements and hence needs very distinct 
approaches. Second, the straight forward ap-proach of re-indexing 
the graph on every change is very costly, and hence impractical. 
Thus, we need a framework that manages the tradeoffs between the 
indexing costs and query latencies. Third, we need better (and 
probably simpler) indexing strategies that can be incrementally 
maintained as the underlying graph changes. Fourth, most of the 
existing studies on reachability analysis use Relational Databases 
(RDBs) or main-memory indexing structures. However, both of 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 6;June  -2017 

                                                                                               www.ijcrd.com Page 773 

 

them have inherent limitations. While traditional RDBs are often 
too bulky (and thus perform poorly specially for ingesting large 
amounts of indexing data), main memory indexing schemes are 
limited by the main-memory avail-ability. An important and 
interesting question in this regard is whether recent research on 
No-SQL databases such as Cassandra, BigTable, MongoDB and 
DynamoDB can be harnessed for storing reachability indexes. 

In two recent research projects we demonstrated how the 
interval-based indexing paradigm can be extended for answering 
snapshot-specific and continuous reachability queries in dynamic 
hierarchies and graphs [10], [11]. How-ever, we believe that the 
research on reachability analysis in impulsive graphs is in very 
nascent stages, and much more work needs to be done to address 
the above challenges. 

 
Finding paths constrained by a formal language, i.e., where 

labels of edges forming a path must form a string from a formal 
language over an alphabet , have recently gained significant 
attention This can involve a single path (e.g., shortest) or all paths 
between u and w. The problem of finding simple paths constrained 
by regular expressions has been studied quite intensively [12], 
[13]. Formal language constrained graph problems were discussed 
in [14], who showed that shortest path problems, when constrained 
by a context-free language can be solved in polynomial time. 
However, finding simple paths between a source and a given 
destination, constrained by a regular language, is N P-hard, unless 
the graph itself is treewidth bounded, when it can be solved in 
polynomial time. 

 
More research is needed in this area, especially in regard to very 

large and distributed graphs, including the very large data sets 
within the Linking Open Data project, discussed in section III.B, 
later in this paper. 

 
Shortest Path: The purpose of shortest path problems is to find a 

path with the minimum distance (cumulative edge weight) that 
includes all k vertices in the path. Versions exists for both directed 
and undirected graphs. When k = 2, Dijkstra’s Algorithm [15] or 
the Bellman-Ford algorithm 

 
may be used. For a digraph, let the edge label l(e) represent an 

edge weight, then given vertices u and w, find s-path. 
 
For k = 3, three applications of Dijkstra’s Algorithm (or 

equivalent) will suffice to find the short path connecting all three 
vertices. The all-pairs short path problem [17] is also of interest in 
Big Data Analytics. 

 
B. Pattern Problems 
 
A simple and common form of pattern query, is to take a query 

graph Q and match its labeled vertices to corresponding labeled 
vertices in a data graph G. 

 
pattern(Q; G) = : Q:V ! 2G:V such that 
8u0 2  (u); l(u0) = l(u) 
 
One may think of vertex u in the query graph Q having a set of 

corresponding images fu0ig in the data graph G. 
 

Graph Simulation: In addition to the labels of the vertices 
matching, patterns of connectivity should match as well; e.g., child 
match. Given, a possible match between u 2 Q:V and u0 2 (u), it is 
accepted iff for each vertex v in child(u) there is a vertex in (v) that 
is present in child(u0) as well. 

 
matchc(u; u0) = 8v 2 childQ(u); 9v0 2  (v) such that u0v0 2 G:E 
 
Algorithms for graph simulation typically work as fol-lows: For 

each vertex u 2 Q:V , initially compute the mapping set (u) based 
on label matching. Then, repeatedly check the child match 
condition, matchc, for all vertices to refine their mapping sets until 
there is no change. For example, in Figure 1, (2Q) = f2G; 7Gg, so 
both ver-tices must undergo a child match, matchc(2Q; 2G) and 
matchc(2Q; 7G). The matchc(2Q; 7G) condition is evalu-ated as 
follows: 

 
matchc(2Q; 7G) = 8v 2 f1Q; 3Q; 4Qg; 9v0 2  (v) such that 7Gv0 

2 G:E The matchc is true, since 8G 2 (1Q) and 7G 8G 2 G:E, 5G 2 
(3Q) and 7G 5G 2 G:E, and 9G 2 (4Q) and 7G 9G 2 G:E. If the 
matchc evaluated to false, vertex 7G would be removed from (2Q). 

 
Similarly, one may wish to match parents. Given, a possible 

match between u 2 Q:V and u0 2 (u), it is accepted iff for each 
vertex in w in parent(u) there is a vertex in (w) that is present in 
parent(u0) as well.  
 
 
 
 
 
 

Figure 1. An Example for explaining the graph simulation algorithm 
 

matchp(u; u
0
) = 8w 2 parentQ(u); 9w

0
 2  (w) such that w

0
u
0
 

2 G:E  
When the connectivity constraint is matchc, the pattern 
matching model is referred to as graph simulation [18], 
while when both matchc and matchp are used it is referred 
to as dual simulation [19].  

To further restrict the matches, one may wish to eliminate 
solutions that contain large cycles which are possible to appear 
with dual simulation. Various locality restrictions may be added to 
dual simulation for this purpose. For strong simulation [19], any 
solution (match in G) must fit inside a ball of radius equal to 
diameter of the query graph Q.  

Strict simulation [20] is based on strong simulation, but 
applies dual simulation first to reduce the number of balls. 
This also reduces the number of solutions.  

A further restriction that reduces the number of balls and 
makes the balls smaller, is called tight simulation [21]. First 
the center of the query graph Q, call it uc, is found and then 

balls are created for u
0
 2 (uc). In addition, the radius of 

these balls is equal to the radius, not the diameter, of the 
query graph.  

Tight simulation can be modified to produce results closer to 
subgraph isomorphism by using cardinality restrictions on child 
and parent matches to push results towards one-to-one 
correspondences. This modification is referred to as Cardinality 

Restricted (CAR)-tight simulation [22]. For matchc(u; u
0
) to be 

true, in addition to the constraints for tight simulation, the child 

count for each label must be at least as large for vertex u
0
 2 G:V as 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 6;June  -2017 

                                                                                               www.ijcrd.com Page 774 

 

it is for vertex u 2 Q:V . For example, while tight simulation 

evaluates matchC (2Q; 13G) to true, as 14G is used to match both 

of 2Q’s children, CAR-Tight simulation evaluates it to false, as 

14G has only one C-labeled child, while vertex 2Q has two.  
2) Graph Morphisms: More complex and often more 

constrained forms of pattern matching occur when a com-
plete correspondence between edges is required. 

matche(Q; G) = 8uv 2 Q:E; 9u
0
v
0
 2 (u) (v) 

T
 G:E 

 
This requires that for any edge uv 2 Q:E, there must be 

a corresponding edge u
0
v
0
 2 (u) (v) 

T
 G:E. In such case, the ( 

) set-valued function may be decomposed into a set of mapping 
functions ffi( )g that map a vertex u 2 Q:V to a vertex u

0
 2 G:V 

. This form of pattern matching is called graph homomorphism 
[23]. If we further require the mapping functions ffi( )g to be 

bijections between Q:V and G
0
:V , where G

0
 is a subgraph of 

G (G
0
 G), then the form of pattern matching is called subgraph 

isomorphism  
[24]. (Some authors make a distinction between subgraph 
isomorphism and graph monomorphism (injective mapping), by 

requiring for subgraph isomorphism that G
0
 to be induced by the 

selected vertices, i.e., include all edges having both endpoints in 

G
0
:V [25].) The difference between graph homomorphism and 

subgraph isomorphism is that the former requires a correspondence 
between vertices, while the latter requires a one-to-one 
correspondence.  

According to [26], the tightest upper bound known for 
such pattern matching algorithms is 
 

O(NQNG
NQ )  

where NQ = vQ + eQ (the number of vertices and edges in 

the query graph) and NG = vG + eG (same for data graph). 
As query graphs increase in size, the complexity of pattern 
matching goes up quickly. Unless there is a fixed upper 

bound on NQ, finding subgraphs matching the query graph 
is N P-hard.  

Figure 2 shows an example of a query graph Q and data graph 
G, and all eight forms of figure matching. In the example, loosely 
inspired from Amazon’s product co-purchasing network, if a 
poduct familty u is frequently co-purchased with product family v, 
the graph contains a directed edge uv from vertex u to v. Here, 
each letter inside the vertex is the category of the product and 
represents its label. Moreover, each number beside a vertex 
represents its ID number. The subgraph matching results of this 
example are displayed in Table I. For the first two rows, the set-
valued function is given, while for the next four, results are 
segmented into balls, and for the last two, mapping functions are 
given. The column Count displays the total number of vertices 
appearing in the results.  

A more flexible type of morphism called graph homeo-
morphism [27] can be thought of as representing a topo-logical 
match. The idea is that is does not matter whether vertices u 
and v are connected directly, i.e., uv 2 G:E or indirectly. A 
sequence of edge subdivision and smoothing operations can be 
performed as part of the topological match. Subdivision occurs 
when a vertex w 2 G:V is inserted between u and v, replacing 
the edge uv with uw and wv. Smoothing goes the other 

direction, replacing uw; wv 2 G:E with uv, so long as w is 
connected to nothing else (indegree(w) = outdegree(w) = 1).  

Table II shows the complexity results for the nine graph pattern 
matching models discussed. The ones based on graph simulation 
are in P, while those based on morphisms are N P-hard. The table 
also indicates the containment hierarchy. In many cases the results 
of one model are strictly contained within that of another. In some 
cases, they are incomparable, e.g., CAR-tight simulation and graph 
niques to improve their response time is an active field of research. 
An important technique is design and imple-mentation of 
distributed algorithms to harness the power of Big Data platforms 
for this purpose [30], [20]. Also, a very recent thread of research 
investigating usage of view and caching techniques with respect to 
pattern queries [31],  
[22]. Moreover, real-world data graphs are evolving over time; 
i.e., there are minor changes in their structure through the time. 

Hence, it should be possible to design incremental algorithms for 
pattern problems in many applications [32]. 
 

Another area of research involves situations where one is 
interested in incomplete or inexact matches of Q in G. For 
example, one could find maximum (or maximal) partial matches of 
Q in G. Maximum can be measured in terms of missing vertices or 
missing edges. The former problem is titled Maximum Common 
Subgraph (MCS), while the latter is called Maximum Common 
Edge Subgraph (MCES). A graph C is a common subgraph to 
graphs Q and G, when it is isomorphic to subgraphs of each. 

 

common(Q; G) = C such that C isomorphic to Q
0
 and G

0 

 
where Q

0
 Q and G

0
 G. An MCS is a common subgraph with the 

maximum number of vertices [33], while an MCES is a common 
subgraph with the maximum number of edges  
[34]. These types of pattern matching are not the focus of 
this paper, but the following paper [35] provides a good 
survey. 
 

The long term trend for research in graph pattern matching is to the 
attack the problem of N P-hardness (e.g., Subgraph Isomorphism and 

Graph Homomorphism, see Table II) from two directions. Effective 
techniques for indexing, ordering evaluations and pruning away 

vertices have provided huge speed-up, e.g., compare the performance 

recent algorithms, DualIso [36] and TurboIso [37], to that of the 

original algorithm for subgraph isomorphism, Ullmann’s Algorithm  
[24]. The other direction, is to create more sophisticated 
polynomial algorithms that produce results more closely 
resembling the results produced by Subgraph Isomorphism. As 
shown in Table I, the move from graph simulation to dual to strong 
to strict to tight to CAR-tight simulation, illustrates the progress in 
this research direction. Although more complex, an extension 
beyond dual simulation to also check grandchildren could be 
tested. Many combinations of checking grandchildren (or 
grandparents) could be added to all the simulation models 
described above. The polynomial-time algorithms developed could 
be closer to the results produced by subgraph isomorphism. 
Unfortunately, provid-ing absolute or relative error bounds is 
complicated by the fact that related inexact problems like MSC and 
MCES are Approximable APX-hard [38]. The other avenue is to 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 6;June  -2017 

                                                                                               www.ijcrd.com Page 775 

 

apply more computational power through parallel and distributed 
techniques, see section IV. 

III. APPLICATIONS 
 
A. Graph Databases 
 

Graph databases [39] have existed form some time. Re-cently, 
with the emergence of NoSQL databases [40] as an alternative to 
traditional Relational Databases for big data applications requiring 
greater storage and performance, graph databases, along with 
document databases, are gaining in momentum. Some of the 
popular graph databases are Neo4j [41], OrientDB [42] and Titan 
[43].  

In this paper, the focus is not on graph databases, but rather how 

advances in graph pattern matching could be used in graph database 

engines to better query processing. Neo4j supports two query 

languages Cypher and Gremlin [44]. Consider the following query in 

the Cypher language. 
 
MATCH (x: Lawyer, y: Doctor, z: Lawyer, 

x-[:FRIEND]->y, 
x-[:COMPETES_WITH]->z, 
y-[:FRIEND]->z) 

 
Given two lawyers and one doctor, where the first lawyer is a 
friend of the doctor and competes with the second lawyer, whom 
the doctor is friends with, find all (or a sufficient number of) 
occurrences of the query graph in the large data graphs making up 
the graph database. Typically, graph database query engines will 
solve such pattern matching queries using (i) subgraph 
isomorphism, (ii) graph homo-morphism or (iii) graph 
homeomorphism algorithms.  

GraphQL [45] defines graph pattern matching in terms of 
subgraph isomorphism. The paper defines a function similar 

to ours, but generalizes to matching a predicate fu rather 
than a label l. Given a vertex u 2 Q:V , the initial matches in 
G are defined as follows: 
 

(u) = fu
0
 : u

0
 2 V:G and fu(u

0
)g 

 
The pattern matching algorithm used in GraphQL first 
computes for all vertices in Q (these are called the feasible 
mates) and then narrows down the choices by checking the 
correspondence of edges.  

The GrGen [26] uses graph homomorphism to match query 
and data graphs. Although graph pattern matching queries are 
much faster in graph databases than in relational databases 
[44], current and new research ideas could be incorporated for 
further speed-up. Graph databases can also benefit from the 
considerable amount of research performed on indexing 
techniques [46]. 
 
B. Semantic Web 
 

The concept of Semantic Web has been introduced by Tim Berners-

Lee as an evolution of the World Wide Web to enable data sharing and 

reuse “across application, enterprise, and community boundaries”. The 

Semantic Web is supported on a number of standards, including the 

Resource Description Framework (RDF), the Web Ontology Language 

(OWL) and SPARQL. Conceptually, data encoded using RDF is 
 

While many implementations of RDF triple-stores rely on 
some form of a relational database, in some cases, RDF triple-
stores are organized as graphs [47]. Some other im-plementations 

are quad stores, as RDF data sets may include multiple graphs and 
the graph to which a triple belongs is the fourth element, making 
it a quadruple. SPARQL is the query language for RDF data sets, 
recommended by the World Wide Web Consortium. The example 
Cypher query from section III.A looks very similar when 
expressed in the in the SPARQL query language: 
 
 

There has been a considerable amount research conducted to 

optimize query engines for processing SPARQL queries 
 

[48]. Much of the progress involved development of sophis-
ticated indexing strategies and graph-based storage models. 
Recently, a Linking Open Data (LOD) project [49] has been 
innitiated to provide a method of publishing a variety of 
structured data sets as interlinked RDF data sets. As of 2014, the 
LOD project comprised 1014 interlinked RDF data sets spanning 
a multitude of knowledge areas, such as life sciences, geographic, 
government, social networking, publications, media, and 
linguistics. At the center of it is DBpedia, an RDF representation 
of the Wikipedia, which is interlinked with a high number of 
other data sets. Overall, the size of the interlinked RDF graph in 
the LOD cloud is measured in tens of billions of RDF triples and 
therefore edges (over 80 billion as of this writing).  

As the sizes of individual RDF data graphs continue to grow 
dramatically, optimization of processing of SPARQL queries 
becomes even more important, especially in view of the need for 
complex, hypothesis-driven [50] and analytics-related queries. 
Much effort must be dedicated to distributed processing of 
SPARQL queries [51], [52]. Furthermore, processing of federated 
SPARQL queries (introduced in SPARQL 1.1) on the LOD graph 
is challenging and requires vigorous research.  

As the individual data sets dramatically increase in size, RDF 
graph partitioning and its impact on distributed pro-cessing of 
SPARQL queries and RDF graph analytics [53] is of significant 
importance. SPARQL query processing was formulated in terms 
of subgraph isomorphism and related to graph databases in [54]. 
A SPARQL implementation based on graph homomorphism is 
given in [55]. Even though SPARQL’s OPTIONAL graphs and 
the UNION operator offer much flexibility in query formulation, 
many RDF ana-lytics tasks may be expressed much easier with 
the addition of a other query types. For example, it will be 
important to include query forms based on graph simulation and 
other graph morphisms discussed in section II.B, which are not 
directly available in SPARQL. This will require providing 
additional query forms and/or relaxing the strict subgraph 
isomorphism semantics of the current query language. 
 

C. Social Networks/Media and Web Mining 
 

Graphs are employed heavily in online social net-works/media 
(Facebook, Twitter, LinkedIn, etc.) and online retailers 
(e.g., Amazon). The reason for this popularity is that graphs 

offer a natural way of representing various kinds of relationships 
that are important for these applications. The friendship graph in 
Facebook, the follower graph in Twitter, endorsement graph in 
LinkedIn and product affinity graph in Amazon are some examples 
of social network and media graphs. The characteristics and 
properties of graphs vary significantly from one application to 
another. For example, the follower-following relationship graph in 
Twitter is a directed graph with various users as its vertices. A 
directed edge from vertex u to vertex v signifies that the user 

Pph, 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 6;June  -2017 

                                                                                               www.ijcrd.com Page 776 

 

represented by u is a follower of user v. Note that most of the 
graphs in most online social networks and e-commerce 
organization are not only massive but also dynamic. 
 

Social media companies are keen to derive business intelligence 
by running various kinds of analytics on these graphs. Computing 
various path related statistics is among the most common type of 
graph analytics. For example, social networking companies are 
interested in finding the most “influential” persons amongst their 
user-base. A popu-lar metric for quantifying influence is the 
number of vertices within n hops of a given person. Thus, 
computing the exact/approximate number of n-hop neighbors of all 
or a subset of vertices is a common analytics task. Interestingly, 
there are two problems embedded in this task – computing the 
number of n-hop neighbors from scratch and maintaining the 
statistics as the graph undergoes changes. A variant of this problem 
is to estimate the influence as a weighted sum of n-hop neighbors 
(for instance, Influence(v) = 

# of j-hop vertices
 ). In this equation, the contribu- 

j 
tion of a vertex to the influence score of another vertex diminishes 
as the distance between them increases. Other commonly 
employed path-related graph analytics tasks in-clude: (a) 
computing shared n-hop neighbors between a given pair of vertices 
(used for suggesting friends), (b) computing one or more paths 
between a given pair of vertices (for illustrating how a suggested 
friend is related to a given user), and (c) computing graph 
centrality measures. 

Graph pattern matching queries are also popular in social media 
applications. Besides the relatively controlled environ-ments 
provided by graph databases and their cousins RDF triple-stores, 
there is a great deal of interest in graph pattern matching in social 
networks/media and mining the Web in general. As pointed out by 
[56], the data in such contexts are more noisy, so that exact 
matching, particularly of complex topology, may be less useful 
than inexact matching. For these types of applications, some form 
of graph simulation may be more useful than subgraph 
isomorphism.  

For such applications, the use of graph homomorphism is 
discussed in [57]. Graph homomorphism is more flexible than 
subgraph isomorphism, as stated in Khan et al, 2013, “In contrast 
to strict one-to-one mapping as in traditional subgraph 
isomorphism tests, we consider a more general many-to-one 
subgraph matching function. Indeed, two query nodes may have 
the same match” [56]. Beyond that, the work reported in the paper 
also relaxes the strict label matching used in subgraph 
isomorphism [56]. Relaxations to both graph homomorphism and 
subgraph isomorphism are presented in [50]. The basic idea is 
similar to that of graph homeomorphism in which an edge in one 
graph is mapped/matched to a path in the other graph. A form of 
graph homeomorphism where edges are mapped to simple paths 
matching a regular expression is discussed in [51]. 
 
IV. COMPUTATIONAL MODELS AND 
FRAMEWORKS 
 

For problems that have a few well-defined phases of 
computations, MapReduce style computations provide a means for 
highly parallel execution in large clusters with hundreds or more 
machines [60]. Some classical examples are word counting, 
statistics such as means and variances, and page rank. Frameworks, 

like Hadoop [61], put such capabilities within the hands of many 
programmers. Unlike the Message Passing Interface (MPI) , only a 
limited amount of specialized training is needed. The provision of 
fault-tolerant execution and a high-performance distributed file 
system further makes programming easier. Typically in Hadoop, 
data is read from the Hadoop Distributed File System (HDFS) by 
mappers based on a key values and written back to HDFS, and 
read by reducers, merged and again written back.  

More complex algorithms, particularly iterative algo-rithms, are 

less amenable to the basic MapReduce style. Apache Storm [56] is 

similar to Hadoop, but focuses on more efficient stream 

processing, allowing data to be sent directly from one worker to 

another. Apache Spark [64] maintains intermediate results in main 

memory to reduce the number of slow page transfers to and from 

secondary storage and thereby, speed up computations. Hadoop 2 

[53] adds the YARN resource manager, so that other programming 

models in addition to MapReduce can be supported.  
An alternative to dividing computations into mappers and 

reducers for iterative algorithms, is to divide computations into a 

series of supersteps that involve receiving input messages, 

performing computations and sending output mes-sages. 

Synchronization is system provided, since a task must wait for all 

tasks within a superstep to complete, before moving on the next 

superstep. This approach was made popular with Bulk 

Synchronous Parallel (BSP) [2]. In cases, where the number of 

superstep is not too large and work is well balanced among the 

tasks, BSP can be quite useful for implementing graph algorithms.  
A special form of BSP, called vertex-centric, has become 

popular for big data graph analytics. In this programming model, 
each vertex of the graph is a engineering unit which is 
conceptually a task in BSP. Each vertex initially knows only about 
its own status and its outgoing edges. Then, vertices can exchange 
messages through successive supersteps to learn about each other. 
When a vertex believes that it has accomplished its tasks, it votes 
to halt and goes to inactive mode. When all vertices become 
inactive the algorithm terminates. Several frameworks support this 
style of pro-gramming including Pregel [3], GPS [5] and Giraph 
[4].  

Although the BSP computing model can be success-fully used 
for graph, dual, strong, strict, tight, CAR-tight simulation, our 
work has found significant overhead in the synchronization. This is 
particularly true in the latter supersteps when many of the vertices 
have dropped out of the calculation. To obtain better performance, 
one may resort asynchronous frameworks such as GraphLab [66] 
and GRACE . Unfortunately, this approach puts much of the 
burden for synchronization back on the programmer.  

Future research may pursue two research directions. First, 

combining the ease of programming and high scalability potentials of 

BSP, with the performance advantages of asynchronous programming 

should be explored. Second, effective combination of multi-core 

parallel programming with cluster-based distributed programming, 

with minimal quality overhead should be chased as well. 
 
V. CONCLUSIONS 
 

With the increasing importance and growing size of graph stores 
and databases, recent research activity has increased substantially. 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 6;June  -2017 

                                                                                               www.ijcrd.com Page 777 

 

Advancement has also been substantial, but many challanges 
remain for future research. 
 
VI. REFERENCES 
 
[1] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph 

pattern matching: from intractable to polynomial time,” Proc. 
VLDB Endow., vol. 3, no. 1-2, pp. 264–275, Sep 2010. 

 
[2] L. G. Valiant, “A bridging model for parallel computation,” 

Communications of the ACM, vol. 33, no. 8, pp. 103–111, 
1990. 

 
[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. 

Horn, N. Leiser, and G. Czajkowski, “Pregel: a system for 
large-scale graph processing,” in SIGMOD. ACM, 2010, pp. 
135– 146. 

[4] “Giraph website,” http://giraph.apache.org/. 
 
[5] S. Salihoglu and J. Widom, “GPS: A graph processing 

system,” in SSDBM. ACM, 2013, pp. 22:1–22:12. 
 
[6] H. Jiang, H. Wang, P. S. Yu, and S. Zhou, “GString: A novel 

approach for efficient search in graph databases,” in ICDE, 
2007. 

 
[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reacha-

bility and distance queries via 2-hop labels,” SIAM Journal 
on Computing, vol. 32, no. 5, pp. 1338–1355, 2003. 

 
[8] S. Trisl and U. Leser, “Fast and practical indexing and 

querying of very large graphs,” ser. SIGMOD. ACM, 2007, 
pp. 845–856. 

 
[9] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu, “Dual 

labeling: Answering graph reachability queries in constant 
time,” in ICDE’06. IEEE, 2006, pp. 75–75. 

 
[10] P. R. Mullangi and L. Ramaswamy, “SCISSOR: scalable and 

efficient reachability query processing in time-evolving 
hierarchies,” in 22nd ACM International Conference on In-
formation and Knowledge Management, CIKM’13, 2013. 

 
[11] “CoUPE: Continuous query processing engine for evolving 

graphs,” in 2015 IEEE International Congress on Big Data, 
2015. 

 
[12] A. O. Mendelzon and P. T. Wood, “Finding regular simple 

paths in graph databases,” in Proceedings of the 15th Inter-
national Conference on Very Large Data Bases, ser. VLDB 
’89. Morgan Kaufmann Publishers Inc., 1989, pp. 185–193. 

 
[13] “Finding regular simple paths in graph databases,” SIAM 

Journal on Computing, vol. 24, no. 6, pp. 1235–1258, 1995. 
 
[14] C. Barrett, R. Jacob, and M. Marathe, “Formal language 

constrained path problems,” in Algorithm TheorySWAT’98. 
Springer, 1998, pp. 234–245. 

 
[15] E. W. Dijkstra, “A note on two problems in connexion with 

graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 
1959. 

 
[16] R. Bellman, “On a routing problem,” DTIC Document, Tech. 

Rep., 1956. 
 
[17] D. Z. Ghent, “On the all-pairs Euclidean short path problem,” 

in Proceedings of the sixth annual ACM-SIAM symposium 
on Discrete algorithms, vol. 76. SIAM, 1995, p. 292. 

 

[18] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Com-
puting simulations on finite and infinite graphs,” in Founda-
tions of Computer Science, 1995. Proceedings., 36th Annual 
Symposium on. IEEE, 1995, pp. 453–462. 

 
[19] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing 

topology in graph pattern matching,” Proceedings of the 
VLDB Endowment, vol. 5, no. 4, pp. 310–321, 2011. 

 
[20] A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. 

Saltz, “A distributed vertex-centric approach for pattern 
matching in massive graphs,” in Big Data Conference, Oct 
2013, pp. 403–411. 

 
[21] A. Fard, M. U. Nisar, J. A. Miller, and L. Ramaswamy, 

“Distributed and scalable graph pattern matching: Models 
and algorithms,” International Journal of Big Data (IJBD), 
vol. 1, no. 1, 2014. 

 
[22] A. Fard, S. Manda, L. Ramaswamy, and J. A. Miller, “Ef-

fective caching techniques for accelerating pattern matching 
queries,” in Big Data (Big Data), 2014 IEEE International 
Conference on. IEEE, 2014, pp. 491–499. 

 
[23] P. Hell and J. Nesetˇˇril, “On the complexity of h-coloring,”  

Journal of Combinatorial Theory, Series B, vol. 48, no. 1, pp. 
92–110, 1990. 

 
[24] J. R. Ullmann, “An algorithm for subgraph isomorphism,” 

Journal of the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976. 
 
[25] Y. Deville, G. Dooms, and S. Zampelli, “Combining two 

structured domains for modeling various graph matching 
problems,” in Recent Advances in Constraints. Springer, 
2008, pp. 76–90. 

 
[26] R. Gei, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski, 

“GrGen: A fast SPO-based graph rewriting tool,” in Graph 
Transformations. Springer, 2006, pp. 383–397. 

 
[27] A. S. LaPaugh and R. L. Rivest, “The subgraph homeomor-

phism problem,” in Proceedings of the tenth annual ACM 
symposium on Theory of computing. ACM, 1978, pp. 40– 
50. 

 
[28] S. Fortune, J. Hopcroft, and J. Wyllie, “The directed 

subgraph homeomorphism problem,” Theoretical Computer 
Science, vol. 10, no. 2, pp. 111–121, 1980. 

 
[29] R. G. Michael and S. J. David, “Computers and intractability: 

a guide to the theory of NP-completeness,” WH Freeman & 
Co., San Francisco, 1979. 

 
[30] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient 

subgraph matching on billion node graphs,” Proceedings of 
the VLDB Endowment, vol. 5, no. 9, pp. 788–799, 2012. 

 
[31] W. Fan, X. Wang, and Y. Wu, “Answering graph pattern 

queries using views,” in ICDE, March 2014, pp. 184–195. 
 
[32] A. Fard, A. Abdolrashidi, L. Ramaswamy, and J. A. Miller, 

“Towards efficient query processing on massive time-
evolving graphs,” in CollaborateCom, Oct. 2012, pp. 567–
574. 

 



International Journal of Combined Research & Development (IJCRD)                                                             
eISSN:2321-225X;pISSN:2321-2241 Volume: 6; Issue: 6;June  -2017 

                                                                                               www.ijcrd.com Page 778 

 

[33] H. Bunke, “On a relation between graph edit distance and 
maximum common subgraph,” Pattern Recognition Letters, 
vol. 18, no. 8, pp. 689–694, 1997. 

 
[34] J. W. Raymond and P. Willett, “Maximum common subgraph 

isomorphism algorithms for the matching of chemical struc-
tures,” Journal of computer-aided molecular design, vol. 16, 
no. 7, pp. 521–533, 2002. 

 
[35] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years 

of graph matching in pattern recognition,” International jour-
nal of pattern recognition and artificial intelligence, vol. 18, 
no. 03, pp. 265–298, 2004. 

 
[36] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and  

L. Ramaswamy, “DualIso: An algorithm for subgraph pattern 
matching on very large labeled graphs,” in BigData 
Congress. IEEE, 2014, pp. 498–505. 

 
[37] W. S. Han, J. Lee, and J. H. Lee, “Turbo iso: towards 

ultrafast and robust subgraph isomorphism search in large 
graph databases,” in SIGMOD. ACM, 2013, pp. 337–348. 

 
[38] V. Kann, “On the approximability of the maximum common 

subgraph problem,” in STACS 92. Springer, 1992, pp. 375– 
388. 

 
[39] I. Robinson, J. Webber, and E. Eifrem, Graph databases. 

”O’Reilly Media, Inc.”, 2013. 
 
[40] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL 

database,” in Pervasive computing and applications (ICPCA). 
IEEE, 2011, pp. 363–366. 

 
[41] J. Webber, “A programmatic introduction to NEO4j,” in 

Systems, Programming, and Applications: Software for Hu-
manity. ACM, 2012, pp. 217–218. 

 
[42] C. Tesoriero, Getting Started with OrientDB. Packt Publish-

ing Ltd, 2013. 
 
[43] “TITAN Distributed Graph Database,” 

http://thinkaurelius.github.io/titan/. 
 
[44] F. Holzschuher and R. Peinl, “Performance of graph query 

languages,” in EDBT/ICDT, 2013. 
 
[45] H. He and A. K. Singh, “Graphs-at-a-time: query language 

and access methods for graph databases,” in Proceedings of 
the 2008 ACM SIGMOD international conference on 
Management of data. ACM, 2008, pp. 405–418. 

 
[46] S. Sakr and G. Al-Naymat, “Graph indexing and querying: a 

review,” International Journal of Web Information Systems, 
vol. 6, no. 2, pp. 101–120, 2010. 

 
[47] B. McBride, “Jena: Implementing the RDF model and syntax 

specification.” in SemWeb, 2001. 
 
[48] M.  Stocker,  A.  Seaborne,  A.  Bernstein,  C.  Kiefer,  and  

D. Reynolds, “SPARQL basic graph pattern optimization 
using selectivity estimation,” in Proceedings of the 17th 
international conference on World Wide Web. ACM, 2008, 
pp. 595–604. 

 
[49] T. Heath and C. Bizer, “Linked data: Evolving the web into a 

global data space,” Synthesis lectures on the semantic web: 
theory and technology, vol. 1, no. 1, pp. 1–136, 2011. 

 

[50] G. Gosal, K. J. Kochut, and N. Kannan, “Prokino: an 
ontology for integrative analysis of protein kinases in 
cancer,” PloS one, vol. 6, no. 12, p. e28782, 2011. 

 
[51] J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL 

querying of large RDF graphs,” Proceedings of the VLDB 
Endowment, vol. 4, no. 11, pp. 1123–1134, 2011.  

¨ 
[52] P. Peng, L. Zou, M. T. Ozsu, L. Chen, and D. Zhao, “Process-

ing SPARQL queries over linked data–a distributed graph-
based approach,” arXiv preprint arXiv:1411.6763, 2014. 

¨ 
[53] L. Zou, M. T. Ozsu, L. Chen, X. Shen, R. Huang, and D. 

Zhao, “gstore: a graph-based SPARQL query engine,” The 
VLDB JournalThe International Journal on Very Large Data 
Bases, vol. 23, no. 4, pp. 565–590, 2014. 

 
[54] R. Angles and C. Gutierrez, “Querying RDF data from a 

graph database perspective,” in The Semantic Web: Research 
and Applications. Springer, 2005, pp. 346–360. 

 
[55] O. Corby and C. Faron-Zucker, “Implementation of SPARQL 

query language based on graph homomorphism,” in Concep-
tual Structures: Knowledge Architectures for Smart Applica-
tions. Springer, 2007, pp. 472–475. 

 
[56] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao, 

“Neighborhood based fast graph search in large networks,” in 
SIGMOD Conference, 2011. 

 
[57] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “Nema: Fast 

graph search with label similarity,” Proceedings of the VLDB 
Endowment, vol. 6, no. 3, pp. 181–192, 2013. 

 
 


