
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 1; Issue: 8; December–2013

 www.ijcrd.com Page 21

 FP-Growth algorithm in Data Compression frequent patterns

Mr. Nagesh V

Lecturer, Dept. of CSE

Atria Institute of Technology,AIKBS

Hebbal , Bangalore ,Karnataka

Email : nagesh.v@gmail.com

Abstract-The transmission of supermarket

data from one machine to another demands

high bandwidth because, usually it is very

vast. In order to reduce the bandwidth

requirement, usually we compress the data

before transmission and decompress the same

in the target machine. In general, the

supermarket data has some relationship among

the items in a bucket or transaction.This

relationship among the items in the

transactions can be identified by using an

association rule mining algorithms like FP

growth. Once we know the frequent patterns of

the data items, this can be used to construct the

dictionary in order to improve the performance

of the data compression. The new data

compression algorithm will make use of the

frequent patterns, which has been identified by

FP-growth algorithm, to construct the static

dictionary. This static dictionary will be used

by both compression and decompression

techniques.

Key words: FP-tree, FP-growth algorithm,

Dictionary.

1. Introduction

In Market Basket Analysis the most

importent question is “ Which group of

items are customers likely to buy

together?” To answer this question we

need to check at the transaction databse of

the store and find which set of items are

bought most frequently. This gives rise to

a widely studied problem called “Frequent

Pattern Mining”.

A pattern is a set of products or items that

is interesting in some way. If a set of items

occurs very frequently among the

transactions, it is interesting indeed. Thus

a pattern that occurs more than a pre

specified number of times it is called a

frequent pattern. There are several

algorithms for mining frequent patterns in

the transaction database. Apriori is one of

the earliest and mostly studied algorithm.

Apriori is based on the anti-monotone

Apriori Principle which says that a “if any

length K pattern is not frequent in the

database, its length k pattern is not

frequent in the database, its length (k+1)

super-pattern can never be frequent”.

Based on this principle , a number of

algorithms(i.e. MaxMiner, AprioriTID,

etc.) are given. There is another class of

algorithms uses an extended prefix tree of

the transactions called FP-tree. In this

report, three different mining approaches

of that class are described. FP-growth is

the earliest of them and it generates the

complete set of frequent patterns. The

other two approaches are mining Top K

Frequent Closed Pattern and mining

Compressed Frequent Pattern. These

algorithms are faster than most of the

Apriori Based algorithms.

The remaining of the report consists of

four sections. In section 2 frequent pattern

mining problem is formally defined. In

section 3 previous algorithms on frequent

pattern mining is discussed. In section 4

the algorithm for constructing the FP- tree

is explained. Section 5 describes the

algorithm FP-growth. In section 6 and 7, a

couple of extensions of the frequent

pattern mining problems are drawn and for

each problem an algorithmic framework is

given. Section 8 and 9 shows some

performance studies and related works.

And in Section 10 we conclude.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 1; Issue: 8; December–2013

 www.ijcrd.com Page 22

2. Problem Definition

Let I = {a1, a2,, am} is a set of items. A

transaction TI is a set of items representing the

items of sale in real world. A transition

database DB= T1, T2, ..., Tn is a set of

Transactions representing sales data over a

significant period of time(e.g. a day, a week,

etc). A pattern P is a subset of a least one

transaction of DB. Support of a pattern P is the

number of transactions Ti such that P Ti . We

will represent the support of a pattern P as

P.support. a pattern P is frequent pattern if

P.support > where is the minimum support

threshold.

For a transaction database DB and minimum

support threshold , finding the complete set

of frequent patterns is called the frequent

pattern mining problem.

3. Previous Algorithms

Apriori is the mostly studied frequent pattern

mining algorithm, it starts with the set of

frequent items (length=1) that have minimum

support. In each iteration it generates a set of

candidate(potential) patterns of the next length.

Then it checks transaction in the database to

count the support for each of the candidate set.

It terminates when there is no candidate

patterns of next length is achievable. Various

strategies for generating the candidate set and

updating the count values are developed. All of

these strategies have the same disadvantages

which are

 Generating candidate set is redundant

because many candidates are not actual

patterns.

 Generating candidate set is costly

because it may end up with

exponential number of candidate sets.

For example, to generate a pattern of

length k it may consist of 2
k
 candidate

sets.

 Scanning the database in each iteration

for updating the count values is costly.

To get rid of these problems, we have to give

up generating patterns and counting their

supports. Here the FP-tree comes into play. FP-

tree is a compact data structure that

summarizes the whole database and sufficient

for growing larger patterns from smaller ones.

In the next section, construction and properties

of FP-tree are described.

4. FP-tree

Structure:

An FP-tree has two main components. The

item prefix subtrees with a root and frequent-

item header table.

Each node in an item prefix subtree consists of

three fields, item-name, count and node link.

Count registers the number of transactions that

support the itemset built by accumulating the

items from root to that node. Node-link is the

link to the next node having the same item-

name or null if there is none.

Frequent-item header table has two columns,

item-name and head of node-link which points

to the start of the list in the FP-tree for its item-

name.

Construction:

 Before constructing the FP-tree we need to

scan the whole database once to find the set F

of frequent items(items with support>) and

their supports. We then sort F in the

descending order of the supports. This sorted

list of items is called L.

We then create a root node with no item-name.

We then take each transaction at a time to

update the tree. For each transaction we sort

the items in the order of L and insert the items

into the tree in that order. At the time of

insertion, we always try to merger the prefix

path of the current transaction with an existing

path in the FP-tree and create a branch if it

does not match.

Figure1 shows a transactions database and

Figure 2 shows its FP-tree for =3.

Figure1: Transaction database

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 1; Issue: 8; December–2013

 www.ijcrd.com Page 23

Figure2: FP-tree

Properties:

 FP-tree contains the information of a

transaction database completely and

compactly for a particular threshold .

 Height of the Fp-tree is bounded by the

maximal number of frequent items in

any transaction in the database.

Next section describes how we can use the FP-

tree to generate the Frequent patterns.

5. FP-growth

FP-growth is an algorithm for finding the

complet set of frequent patterns using the tree.

The FP-tree tells us that all the items in the tree

are frequent. To mine larger patterns, FP-

growth builds Conditional Pattern base and

then Conditional FP-tree for each item ai in the

item header table. Each pattern in a conditional

pattern base for ai is created by accumulating

all the items in the path from root to a node

containing the ai with a support equal to the ai.

After accumulating all the conditional patterns

from all the ai nodes, FP-growth builds the

conditional FP-tree as previously described.

Conditional FP-tree tells us that if we

concatenate any item on it with ai that will be a

frequent pattern. Thus FP-growth builds larger

patterns in a recursive fashion by creating

smaller conditional FP-tree at each step. A

sample path of the recursion tree is shown in

Figure3.

Figure 3: Conditional FP-tree for m

Another observations is that an FP-tree

consisting of a path generates all the

combinations of its nodes as frequent patterns.

Figure-4 shows a single path tree and the

patterns generated by this path. Thus by

generating all the combinations of the nodes in

a path we can save some recursive calls to FP-

growth. Including this saving scheme the

pseudo code for FP-growth is given in Table1.

To use FP-growth successfully the user must

know the minimum support threshold() for

his/her purpose. For a large support threshold

FP-growth may generate few patterns of no

interest. While a smaller threshold may end up

with a large number of frequent patterns. To

make it more usable, variations of frequent

pattern mining is developed. In the next two

sections two of such variations is described.

Figure 4. Patterns generated by Single path

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 1; Issue: 8; December–2013

 www.ijcrd.com Page 24

 Table 1:Pseudo code for FP-growth

6. Top- K frequent closed pattern

mining

Top-K frequent closed pattern mining is a

mining task where only the top-K patterns

in orders of the supports are output. So

there is no support threshold here. Besides

the ouput of FP-growth may contain a

pattern that has some of its subpatterns in

the output with same support. These

subpatterns are completely included in the

super pattern. That’s why this approach of

mining frequent pattern mines only closed

pattern. A closed pattern is a pattern whose

support is larger than any of its super

pattern. For example in Figure: 5 a

complete set of frequent patterns and their

supports are shown. The red patterns are

closed patterns. If we awant to find Top-2

frequent patterns with length >2 they will

be fc and fcam.

To mine Top-K closed pattern, the FP-tree

is used. We first build an FP-tree for =0.

While building the tree, any transaction

with length less than the min-length is

pruned out. After the tree is built

completely, relatively infrequent patterns

can be pruned by raising the minimum

support from 0. Two methods are used for

this purpose. The closed-node-count and

the descendent-sum. After all the pruning

is done we can now generate the Top-K

closed patterns from the FP-tree. To ensure

that closed frequent patterns are being

generated, we can verify the closed

property using some hash based method.

Figure 5: Closed Patterns

7. Compressed Frequent Pattern

Compressed Frequent Pattern Mining is a

mining task where a representative Pattern

is found for a subset of the complete

frequent pattern set. Typically frequent

patterns are clustered using a tightness

measure and a representative pattern is

found for each of the clusters. Finding the

minimum set of representative patterns is

NP-hard. Figure 6 shows an example

clustering and a set of representative

patterns.

Figure 6. Closed patterns

Clustering the frequent patterns is done

using the following distance measure.

Here P1 and P2 are two closed patterns

and T(P) is the set of transactions that

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 1; Issue: 8; December–2013

 www.ijcrd.com Page 25

support the pattern P. D is a distance

metric. It satisfies Four properties of a

metric- non-negativity, reflexivity,

asymmetry and triangular inequality. The

clustering is performed by finding a

representative pattern Pr for each cluster

where P Pr for every member P of its

cluster and D(Pr,P) < Two algorithms

for finding representative patterns are

proposed. The RPglobal and RPlocal. The

former is better in tightness but less

efficient than the later. RP-global finds the

complete set of covered patterns for each

pattern. Two patterns are said to cover

each other if their distance is less than .

Then it iteratively picks the maximum

coveriung set and thus tries to reach

minimum number of clusters.

8. Performance Study

In this section we demonstrate the quality

and computational performance using the

benchmarks of the frequent itemset mining

dataset repository. The algorithm is written

in JAVA. The methods to be compared are

summarized as follows. In the FP-Growth

package, we generate all the closed

frequent patterns w.r.t.

M(minimum_supp). In the RPglobal

method, we first use FP-Growth to get all

the Closed frequent itemsets with

min_sup , then use

RPglobal to find a set of representative

patterns covering all the patterns with

min_sup M. In the RPlocal method, we

directly compute all the representative

patterns from database.

8.1 Number of Representative patterns

The first set of experiments comparre three

algorithms w.r.t the number of output

patterns. We select accidents, chess, and

pumsb_star data sets. For each data, we

vary the value of min_sup as the

percentage of the number of total

transactions and fix =0.1(we think it is a

reasonably good compression quality). The

results are shown in Fig.7 and Fig.8. We

have the following observations: First,

both RPglobal and RPlocal are able to find

a subset of representative patterns, which

is almost two orders of magnitude less

than the whole collection of the closed

patterns; Second, although RPlocal outputs

more patterns than RPglobal, the

performance of RPlocal is very close to

RPglobal. Almost all the outputs of

RPlocal are within two times of RPglobal.

Figure.7 Number of Output Patterns w.r.t.

min_sup, Accidents Data Set

Figure.8 Number of Output patterns w.r.t.

min_sup, Chess Data Set

9. Related Work

Lossless methods have been proposed to

reduce the output size of frequent itemset

patterns. [4] developed the concept of

closed frequent patterns, and [5] proposed

mining non-derivable frequent itemsets.

These kinds of patterns are concise in the

sense that all of the frequent patterns can

be derived from these representations.

However, they emphasize too much on the

supports of patterns so that the

compression power is limited.

Our work belongs to the family of Lossy

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 1; Issue: 8; December–2013

 www.ijcrd.com Page 26

compression methods. Previous works in

this direction include maximal patterns,

error-tolerant patterns, -free itemsets and

boundary cover sets. Typically, our work

is close to error-tolerant patterns and -

free itemsets. Our work is different in that

we define a new distance measure and

formulate the problem as set covering.

Furthermore, we allow extended(i.e.

longer) patterns to represent the

compressed patterns, and it leads to

stronger compression.

10. Conclusion

Mining frequent patterns is an important

branch of data mining. Significant effort

has been given to develop scalable and

efficient algorithms. Besides other

problems like sequential pattern mining,

structured pattern mining, correlation

pattern mining, etc are also being

analyzed. Beside discovering frequent

patterns, recent focus is on interpreting the

frequent patterns more knowledgably.

Newer criteria(e.g. timestamp, price) are

being considered while mining the

patterns. So frequent pattern mining is now

established as a well studied and broad

research area.

11. References

1. Mining Frequent Patterns

without candidate generation –

Jiawi Han, Hian Pei and Yiwen

Yin

2. Mining Top-K Frequent Closed

Patterns without Minimum

Support –Jiawi Han, Jianyong

Wang, Ying Lu and Petre Tzetkov

3. Mining Compressed Frequent-

Pattern Sets- Dong Xin, Jiawi

Han, Xipheng Yan and Hong

Cheng
4. Discovering frequent closed itemsets

for association rules -N. Pasquier, Y.

Bastide, R. Taouil, and L. Lakhal, , in

Proc. ICDT'99, 398-416.

5. Mining all non-derivable frequent

itemsets : T. Calders and B. Goethals,

in Proc.PKDD'02, 74-85.

