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Abstract-The transmission of supermarket 

data from one machine to another demands 

high bandwidth because, usually it is very 

vast. In order to reduce the bandwidth 

requirement, usually we compress the data 

before transmission and decompress the same 

in the target machine. In general, the 

supermarket data has some relationship among 

the items in a bucket or transaction.This 

relationship among the items in the 

transactions can be identified by using an 

association rule mining algorithms like FP 

growth. Once we know the frequent patterns of 

the data items, this can be used to construct the 

dictionary in order to improve the performance 

of the data compression. The new data 

compression algorithm will make use of the 

frequent patterns, which has been identified by 

FP-growth algorithm, to construct the static 

dictionary. This static dictionary will be used 

by both compression and decompression 

techniques. 

Key words: FP-tree, FP-growth algorithm, 

Dictionary. 

1. Introduction 

In Market Basket Analysis the most 

importent question is “ Which group of 

items are customers likely to buy 

together?” To answer this question we 

need to check at the transaction databse of 

the store and find which set of items are 

bought most frequently. This gives rise to 

a widely studied problem called “Frequent 

Pattern Mining”.  

A pattern is a set of products or items that 

is interesting in some way. If a set of items 

occurs very frequently among the 

transactions, it is interesting indeed. Thus 

a pattern that occurs more than a pre  

 

 

 

 

 

specified number of times it is called a 

frequent pattern. There are several 

algorithms for mining frequent patterns in 

the transaction database. Apriori is one of 

the earliest and mostly studied algorithm. 

Apriori is based on the anti-monotone   

Apriori Principle which says that a “if any 

length K pattern is not frequent in the 

database, its length k pattern is not 

frequent in the database, its length (k+1) 

super-pattern can never be frequent”. 

Based on this principle , a number of 

algorithms(i.e. MaxMiner, AprioriTID, 

etc.) are given. There is another class of 

algorithms uses an extended prefix tree of 

the transactions called FP-tree. In this 

report, three different mining approaches 

of that class are described. FP-growth is 

the earliest of them and it generates the 

complete set of frequent patterns. The 

other two approaches are mining Top K 

Frequent Closed Pattern and mining 

Compressed Frequent Pattern. These 

algorithms are faster than most of the 

Apriori Based algorithms. 

The remaining of the report consists of 

four sections. In section 2 frequent pattern 

mining problem is formally defined. In 

section 3 previous algorithms on frequent 

pattern mining is discussed. In section 4 

the algorithm for constructing the FP- tree 

is explained. Section 5 describes the 

algorithm FP-growth. In section 6 and 7, a 

couple of extensions of the frequent 

pattern mining problems are drawn and for 

each problem an algorithmic framework is 

given. Section 8 and 9 shows some 

performance studies and related works. 

And in Section 10 we conclude.  
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2. Problem Definition 

Let I = {a1, a2, ....., am} is a set of items. A 

transaction TI is a set of items representing the 

items of sale in real world. A transition 

database DB= T1, T2, ..., Tn is a set of 

Transactions representing sales data over a 

significant period of time( e.g. a day, a week, 

etc). A pattern P is a subset of a least one 

transaction of DB. Support of a pattern P is the 

number of transactions Ti such that P  Ti . We 

will represent the support of a pattern P as 

P.support. a pattern P is frequent pattern if 

P.support >  where is the minimum support 

threshold. 

For a transaction database DB and minimum 

support threshold , finding the complete set 

of frequent patterns is called the frequent 

pattern mining problem. 

 

3. Previous Algorithms 

Apriori is the mostly studied frequent pattern 

mining algorithm, it starts with the set of 

frequent items (length=1) that have minimum 

support. In each iteration it generates a set of 

candidate(potential) patterns of the next length. 

Then it checks transaction in the database to 

count the support for each of the candidate set. 

It terminates when there is no candidate 

patterns of next length is achievable. Various 

strategies for generating the candidate set and 

updating the count values are developed. All of 

these strategies have the same disadvantages 

which are 

 Generating candidate set is redundant 

because many candidates are not actual 

patterns. 

 Generating candidate set is costly 

because it may end up with 

exponential number of candidate sets. 

For example, to generate a pattern of 

length k it may consist of 2
k
 candidate 

sets. 

 Scanning the database in each iteration  

for updating the count values is costly. 

To get rid of these problems, we have to give 

up generating patterns and counting their 

supports. Here the FP-tree comes into play. FP-

tree is a compact data structure that 

summarizes the whole database and sufficient 

for growing larger patterns from smaller ones. 

In the next section, construction and properties 

of FP-tree are described. 

 

4. FP-tree 

Structure: 

An FP-tree has two main components. The 

item prefix subtrees with a root and frequent-

item header table. 

Each node in an item prefix subtree consists of 

three fields, item-name, count and node link. 

Count registers the number of transactions that 

support the itemset built by accumulating the 

items from root to that node. Node-link is the 

link to the next node having the same item-

name or null if there is none.  

Frequent-item header table has two columns, 

item-name and head of node-link which points 

to the start of the list in the FP-tree for its item-

name. 

Construction: 

   Before constructing the FP-tree we need to 

scan the whole database once to find the set F 

of frequent items(items with support> ) and 

their supports. We then sort F in the 

descending order of the supports. This sorted 

list of items is called L. 

We then create a root node with no item-name. 

We then take each transaction at a time to 

update the tree. For each transaction we sort 

the items in the order of L and insert the items 

into the tree in that order. At the time of 

insertion, we always try to merger the prefix 

path of the current transaction with an existing 

path in the FP-tree and create a branch if it 

does not match. 

Figure1 shows a transactions database and 

Figure 2 shows its FP-tree for =3.  

 
Figure1: Transaction database 
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Figure2: FP-tree 

 

Properties: 

 FP-tree contains the information of a 

transaction database completely and 

compactly for a particular threshold . 

 Height of the Fp-tree is bounded by the 

maximal number of frequent items in 

any transaction in the database. 

Next section describes how we can use the FP-

tree to generate the Frequent patterns. 

 

5. FP-growth 

FP-growth is an algorithm for finding the 

complet set of frequent patterns using the tree. 

The FP-tree tells us that all the items in the tree 

are frequent. To mine larger patterns, FP-

growth builds Conditional Pattern base and 

then Conditional FP-tree for each item ai in the 

item header table. Each pattern in a conditional 

pattern base for ai is created by accumulating 

all the items in the path from root to a node 

containing the ai with a support equal to the ai. 

After accumulating all the conditional patterns 

from all the ai nodes, FP-growth builds the 

conditional FP-tree as previously described. 

Conditional FP-tree tells us that if we 

concatenate any item on it with ai that will be a 

frequent pattern. Thus FP-growth builds larger 

patterns in a recursive fashion by creating 

smaller conditional FP-tree at each step. A 

sample path of the recursion tree is shown in 

Figure3. 

Figure 3: Conditional FP-tree for m 

Another observations is that an FP-tree 

consisting of a path generates all the 

combinations of its nodes as frequent patterns. 

Figure-4 shows a single path tree and the 

patterns generated by this path. Thus by 

generating all the combinations of the nodes in 

a path we can save some recursive calls to FP-

growth. Including this saving scheme the 

pseudo code for FP-growth is given in Table1. 

To use FP-growth successfully the user must 

know the minimum support threshold( ) for 

his/her purpose. For a large support threshold 

FP-growth may generate few patterns of no 

interest. While a smaller threshold may end up 

with a large number of frequent patterns. To 

make it more usable, variations of frequent 

pattern mining is developed. In the next two 

sections two of such variations is described. 

Figure 4. Patterns generated by Single path 
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 Table 1:Pseudo code for FP-growth 

6. Top- K frequent closed pattern 

mining 

Top-K frequent closed pattern mining is a 

mining task where only the top-K patterns 

in orders of the supports are output. So 

there is no support threshold here. Besides 

the ouput of FP-growth may contain a 

pattern that has some of its subpatterns in 

the output with same support. These 

subpatterns are completely included in the 

super pattern. That’s why this approach of 

mining frequent pattern mines only closed 

pattern. A closed pattern is a pattern whose 

support is larger than any of its super 

pattern. For example in Figure: 5 a 

complete set of frequent patterns and their 

supports are shown. The red patterns are 

closed patterns. If we awant to find Top-2 

frequent patterns with length >2 they will 

be fc and fcam. 

To mine Top-K closed pattern, the FP-tree 

is used. We first build an FP-tree for =0. 

While building the tree, any transaction 

with length less than the min-length is 

pruned out. After the tree is built 

completely, relatively infrequent patterns 

can be pruned by raising the minimum 

support from 0. Two methods are used for 

this purpose. The closed-node-count and 

the descendent-sum. After all the pruning 

is done we can now generate the Top-K 

closed patterns from the FP-tree. To ensure 

that closed frequent patterns are being 

generated, we can verify the closed 

property using some hash based method. 

 

 
Figure 5: Closed Patterns 

 

7. Compressed Frequent Pattern 

Compressed Frequent Pattern Mining is a 

mining task where a representative Pattern 

is found for a subset of the complete 

frequent pattern set. Typically frequent 

patterns are clustered using a tightness 

measure  and a representative pattern is 

found for each of the clusters. Finding the 

minimum set of representative patterns is 

NP-hard. Figure 6 shows an example 

clustering and a set of representative 

patterns. 

 

 
Figure 6. Closed patterns 

Clustering the frequent patterns is done 

using the following distance measure. 

 
Here P1 and P2 are two closed patterns 

and T(P) is the set of transactions that 
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support the pattern P. D is a distance 

metric. It satisfies Four properties of a 

metric- non-negativity, reflexivity, 

asymmetry and triangular inequality. The 

clustering is performed by finding a 

representative pattern Pr for each cluster 

where P  Pr for every member P of its 

cluster and D(Pr,P) < Two algorithms 

for finding representative patterns are 

proposed. The RPglobal and RPlocal. The 

former is better in tightness but less 

efficient than the later. RP-global finds the 

complete set of covered patterns for each 

pattern. Two patterns are said to cover 

each other if their distance is less than . 

Then it iteratively picks the maximum 

coveriung set and thus tries to reach 

minimum number of clusters. 

 

8. Performance Study 

In this section we demonstrate the quality 

and computational performance using the 

benchmarks of the frequent itemset mining 

dataset repository. The algorithm is written 

in JAVA. The methods to be compared are 

summarized as follows. In the FP-Growth 

package, we generate all the closed 

frequent patterns w.r.t. 

M(minimum_supp). In the RPglobal 

method, we first use FP-Growth to get all 

the Closed frequent itemsets with 

min_sup , then use 

RPglobal to find a set of representative 

patterns covering all the patterns with 

min_sup M. In the RPlocal method, we 

directly compute all the representative 

patterns from database. 

8.1 Number of Representative patterns 

The first set of experiments comparre three 

algorithms w.r.t the number of output 

patterns. We select accidents, chess, and 

pumsb_star data sets. For each data, we 

vary the value of min_sup as the 

percentage of the number of total 

transactions and fix =0.1(we think it is a 

reasonably good compression quality). The 

results are shown in Fig.7 and Fig.8. We 

have the following observations: First, 

both RPglobal and RPlocal are able to find 

a subset of representative patterns, which 

is almost two orders of magnitude less 

than the whole collection of the closed 

patterns; Second, although RPlocal outputs 

more patterns than RPglobal, the 

performance of RPlocal is very close to 

RPglobal. Almost all the outputs of 

RPlocal are within two times of RPglobal. 

 
Figure.7 Number of Output Patterns w.r.t. 

min_sup, Accidents Data Set 

 
Figure.8 Number of Output patterns w.r.t. 

min_sup, Chess Data Set     

 

 

9. Related Work 

Lossless methods have been proposed to 

reduce the output size of frequent itemset 

patterns. [4] developed the concept of 

closed frequent patterns, and [5] proposed 

mining non-derivable frequent itemsets. 

These kinds of patterns are concise in the 

sense that all of the frequent patterns can 

be derived from these representations. 

However, they emphasize too much on the 

supports of patterns so that the 

compression power is limited. 

Our work belongs to the family of Lossy 
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compression methods. Previous works in 

this direction include maximal patterns, 

error-tolerant patterns, -free itemsets and 

boundary cover sets. Typically, our work 

is close to error-tolerant patterns and -

free itemsets. Our work is different in that 

we define a new distance measure and 

formulate the problem as set covering. 

Furthermore, we allow extended(i.e. 

longer) patterns to represent the 

compressed patterns, and it leads to 

stronger compression. 

 

10. Conclusion 

Mining frequent patterns is an important 

branch of data mining. Significant effort 

has been given to develop scalable and 

efficient algorithms. Besides other 

problems like sequential pattern mining, 

structured pattern mining, correlation 

pattern mining, etc are also being 

analyzed. Beside discovering frequent 

patterns, recent focus is on interpreting the 

frequent patterns more knowledgably. 

Newer criteria(e.g. timestamp, price) are 

being considered while mining the 

patterns. So frequent pattern mining is now 

established as a well studied and broad 

research area.  
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