
International Journal of Combined Research & Development (IJCRD)
eISSN: 2321-225X; pISSN: 2321-2241 Volume: 1; Issue: 8; December–2013

www.ijcrd.com Page 27

A Simple Approach of Dynamic Clustering Application
Servers

1 Mr. J C Achutha, 2 Mr. G K Ravish 3 Mr. Ashok B P
Asst. Professor, Department of Computer Applications

The Oxford College of Engineering , Bommanhalli, Hosur Road ,
Bangalore, Karnataka , India -560068

Email: 1 achutha.sir@gmail.com, 2gkravish@gmail.com 3ashokbp.mca@gmail.com

Abstract— In this paper, we design, implementation, and
experimental evaluation of a middleware architecture for
enabling Service Level Agreement (SLA)-driven clustering
of QoS-aware application servers. Our middleware
architecture supports application server technologies with
dynamic resource management: Application servers can
dynamically change the amount of clustered resources
assigned to hosted applications on-demand so as to meet
application-level Quality of Service (QoS) requirements.
These requirements can include timeliness, availability, and
high throughput and are specified in SLAs. A prototype of
our architecture has been implemented using the open-
source J2EE application server JBoss. The evaluation of
this prototype shows that our approach makes possible

JBoss’ resource usage optimization and allows JBoss to
effectively meet the QoS requirements of the applications it
hosts, i.e., to honor the SLAs of those applications.

Keywords— Service Level Agreement, Quality of Service,
QoS-aware application server, QoS-aware cluster, Dynamic
cluster configuration,

INTRODUCTION

Distributed enterprise applications (e.g., stock trading,
business-to-business applications) can be developed to be
run with application server technologies such as Java 2
Enterprise Edition (J2EE) servers, CORBA Component
Model (CCM) servers, or .NET. These technologies can
provide the applications they host with an execution
environment that shields those applications from the
possible heterogeneity of the supporting computing and
communication infrastructure; in addition, this environment
allows hosted applications to openly access enterprise
information systems, such as legacy databases.These
applications may exhibit strict Quality of Service (QoS)
requirements, such as timeliness, scalability, and high
availability that can be specified in so-called Service Level
Agreements (SLAs). SLAs are legally binding contracts
that state the QoS guarantees an execution environment has
to supply its hosted applications. Current application server
technology offers clustering and load balancing support
that allows the application designer to handle scalability
and high availability application requirements at the

application level; however, this technology is not fully
tailored to honor possible SLAs.. In order to overcome this
limitation, we have developed a middleware architecture
that can be integrated in an application server to allow it to
honor the SLAs of the applications it hosts—in other
words, to make it QoS-aware. The designed architecture
supports dynamic clustering of QoS-aware Application
Servers (QaASs) and load balancing. In current J2EE
servers, the clustering support is provided in the form of a
service. In general, that service requires the initial cluster
configuration to consist of a fixed set of application server
instances. In the case of peak load conditions or failures,
this set of instances can be changed at runtime by a human
operator reconfiguring the cluster as necessary (e.g., by
introducing new server instances or by replacing failed
instances). In addition, current clustering support does not
include mechanisms to guarantee that application-level
QoS requirements are met. These limitations can impede
the efficient use of application server technologies in a
utility computing context. In fact, current clustering design
requires overprovision policies to be used in order to cope
with variable and unpredictable load and prevent QoS
requirements violations.

Our middleware architecture is principally
responsible for the dynamic configuration, runtime
monitoring, and load balancing of a QoS-aware cluster. It
operates transparently to the hosted applications (hence, no
modifications to these applications are required) and
consists of the following three main services: Configuration
Service, Monitoring Service, and Load Balancing Service.

1.1 MIDDLEWARE PLATFORM

A middleware platform is generally used as an
architectural component for supporting the development
and the execution of distributed applications. Its main role
is to create a level of abstraction so as (i) to present a
unified programming model to application developers and
(ii) to mask out problems of system and network
heterogeneity. Middleware can be composed by multiple
layers. There can be identified four principal levels

• Host Infrastructure Middleware it encapsulates and
enhances native operating system communication and

www.ijcrd.com
mailto:sir@gmail.com
mailto:2gkravish@gmail.com
mailto:mca@gmail.com

International Journal of Combined Research & Development (IJCRD)
eISSN: 2321-225X; pISSN: 2321-2241 Volume: 1; Issue: 8; December–2013

www.ijcrd.com Page 28

concurrency mechanisms to create portable and reusable
network programming components;

• Distribution Middleware it defines higher-level
distributed programming models whose reusable APIs and
mechanisms automate the native operating system network
programming capabilities encapsulated by the previous
level

• Common Middleware Services the collection of the
services of this level are responsible for augmenting the
distribution middleware layer by defining higher-level
domain-independent components that allow the application
designers to concentrate on the application logic only;

• Domain-specific Middleware Services these services are
tailored to the requirements of a specific application
domain and embody knowledge of that domain.

Figure 1. Levels of QoS Integration

Nowadays the middleware technology is largely
adopted, in order to make easier the development of
distributed applications; however, it is important that the
middleware remains effective for such types of applications
(e.g., enterprise applications) that can impose demands in
terms of resource availability, adaptivity, reliability,
scalability, and timeliness. In fact, these applications must
operate under changeable environment conditions and they
present stringent Quality of Service (QoS) requirements
that are to be met in order to guarantee the correct behavior
of the applications themselves. Figure 1 depicts the levels
of the software infrastructure in which a QoS management
system should be provided. Thus, for example, at the
operating system level, there should be mechanisms for
reserving such resources as CPU, memory and threads; the
communication level should provide applications with
mechanisms for network monitoring and reservation; the
middleware level should be constructed out of services for
QoS negotiation, monitor an adaptation and finally QoS
monitoring and adaptation can be applied at the application
level as well, by allowing this level to monitor and adapt
the QoS it may require.

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
eISSN: 2321-225X; pISSN: 2321-2241 Volume: 1; Issue: 8; December–2013

www.ijcrd.com Page 29

2 SERVICE LEVEL AGREEMENTS

In current industrial practice, QoS requirements are
specified in so-called SLAs. Our SLA represents a
collection of contractual clauses binding a QoS-aware
cluster to the applications it hosts. We term this SLA a
hosting SLA. This is an XML file that consists of two
principal sections: Client Responsibilities and Server
Responsibilities. These define the rights and obligations of
the application clients and the application server,
respectively. Both the Client and Server Responsibilities
may specify different levels of QoS, each related to some
(or all) operations of the hosted application. Hence, a client
obligation could specify the maximum number of requests
clients are allowed to send to the application, within a
defined time interval.The service Availability attribute
specifies the probability with which the hosted application
must be available over a predefined time period. In
addition, each application operation specified as part of the
SLA Server Responsibilities can be classified according to
a QoS attribute. In the example above, we opted for the
response time attribute max Response Time, as it is used in
most commercial SLAs as an effective parameter for
measuring service responsiveness. Finally, as pointed out in
[9], the SLA may also specify the percentage of SLA
violations that can be tolerated, within a predefined time
interval, before the application service provider incurs a
(e.g., economic) penalty.

3 THE MIDDLEWARE ARCHITECTURE

To address these issues, we conducted an in-depth
assessment of the state-of-the-art in the design of
architectures developed to meet the QoS requirements of
distributed applications. This helped us to formulate a
number of recommendations and principles that guided our
design. Therefore, for example, these recommendations
include the need for a resource monitoring service that
assesses the resource state at runtime; the design of
dynamic adaptation facilities was based on principles
derived from the feedback control theory . In addition, as
we are dealing with a clustered environment characterized
by highly variable and unpredictable load conditions,
dynamic load balancing mechanisms may be necessary.
These mechanisms allow us to balance client requests
among clustered servers, based on the actual load of those
servers, thus preventing server overloading.

In view of the above observations, we designed a
middleware architecture incorporating three principal QoS-
aware middleware services: a Configuration Service, a
Monitoring Service, and a Load Balancing Service.

The Configuration Service is responsible for configuring
the QoS-aware cluster so it can meet the customer

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
2321-225X; pISSN: 2321-2241 Volume: 1; Issue: 8; December–2013

eISSN:

www.ijcrd.com Page 30

application hosting SLA. The main activities performed by
the Configuration Service include configuring the cluster at
the time the hosting SLA is deployed in the QoS-aware
cluster (at SLA deployment time) and possibly
reconfiguring the cluster at runtime. The cluster
configuration process consists of building the initial cluster
by forming a group of nodes from a minimal set of
available nodes to ensure the service availability
requirement of the hosting SLA is met.

The runtime reconfiguration process consists of
dynamically resizing the cluster configuration, by adding or
removing clustered nodes, as needed. Adding nodes can be
necessary in order to handle a dynamically increasing load
and in case a clustered node fails and needs to be replaced
by an operational one (or possibly more than one); for this
purpose, a pool of spare nodes is maintained.

Releasing nodes may be necessary to optimize the use
of the resources. If the load on a hosted application
significantly decreases, some of the nodes allocated to that
application can be dynamically deallocated and included in
the pool of spare nodes for further usage.

The Monitoring Service is in charge of monitoring the
QoS-aware cluster at application runtime so as to detect
possible 1) variations in the cluster membership, 2)
variations in cluster performance, and 3) violations of the
hosting SLA.

Thus, the Monitoring Service periodically checks the
cluster membership configuration to detect whether
clustered nodes should join or leave the cluster following
failures or voluntary connections to (or disconnections
from) the cluster. In addition, it monitors data such as
cluster response time, client request rate, and cluster SLA
violations to detect whether the cluster-delivered QoS
deviates from what is required and specified in the hosting
SLA. Specifically, this service makes use of a collection of
parameters computed and updated at run time. These
parameters allow he Monitoring Service to keep track of
the dynamic behavior of the cluster in order to check
whether or not the cluster is honoring the hosting SLA at
runtime; they serve to maintain 1) the cluster’s operational
conditions trend, 2) the operational conditions trend of each
clustered node, and 3) the cluster violation rate trend.

The Load Balancing Service is implemented at the
middleware level and balances the load of HTTP client
requests among the clustered nodes; it contributes to
meeting the hosting SLA by preventing the occurrence of
node overload and avoiding the use of resources that have
become unavailable (e.g., failed) at runtime. The reason for
implementing load balancing at the middleware level is
twofold; namely, implementing load balancing at this level

allows independence from any underlying operating
system. In addition, the designed Load Balancing Service
can easily detect specific application server conditions,
such as server response time and cluster membership
configuration. The Load Balancing Service we have
developed can be thought of as a reverse proxy server that
essentially intercepts client HTTP requests for an
application and dispatches these requests to the nodes
hosting that application. It includes support for both
request-based and session-based load balancing. With
request-based load balancing, each individual client request
is dispatched to any clustered node for processing; in
contrast, with sessionbased load balancing, client requests
belonging to a specific client session are dispatched to the
same clustered node.

3.1QoS-Aware Middleware Services Interactions

Our QoS-aware middleware services cooperate with each
other to ensure hosting SLA enforcement and monitoring.
Fig. 2 shows how they interact.

Fig 2 QoS-Aware Middleware Services Interactions

In Fig. 2, client requests are intercepted by the Load
Balancing Service. For each request, the QoS delivered by
the cluster is compared to the desired level of QoS
specified in the hosting SLA in order to monitor adherence
to this SLA. To this end, the Configuration Service makes
the hosting SLA content available to the Monitoring
Service. The Monitoring Service cooperates with the Load
Balancing Service to obtain the QoS delivered by the
cluster. Based on the retrieved QoS data, the Monitoring
Service computes and updates the monitoring parameters
(see Section 4), which serve to check whether the cluster
operational conditions are close to violating the hosting
SLA. Hence, the Monitoring Service first monitors the SLA
Client Responsibilities of the hosting SLA. If clients send a
higher number of requests than that allowed, clients are
violating the SLA. No corrective actions are performed to
reconfigure the cluster in this case; rather, an application
level exception is raised that may cause the misbehaving

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
eISSN: 2321-225X; pISSN: 2321-2241 Volume: 1; Issue: 8; December–2013

www.ijcrd.com Page 31

clients to be put in a position not to interfere with the
properly behaving ones. Second, the Monitoring Service
monitors the Server Responsibilities of the hosting SLA. If
it detects that the cluster SLA violation rate trend is close to
breaching the hosting SLA, it invokes the Configuration
Service so as to reconfigure the cluster. In this case, the
Configuration Service acts upon the cluster by adding new
nodes up to a predefined limit. That limit is a configuration
parameter obtainable via either application benchmarking
or application modeling. Its purpose is to identify an upper
boundary above which adding new nodes does not
introduce further significant performance enhancements.
This can be caused by factors such as increased
coordination costs for cluster management and bottlenecks
due to shared resources such as a centralized load balancing
service or a centralized DBMS.

4.A CASE STUDY: THE ENHANCED JBOSS
APPLICATION SERVER

JBoss consists of a collection of middleware
services for communication, persistence, transactions, and
security [18]. These services interact by means of a
microkernel based on the Java Management eXtension
(JMX) specifications .

Fig.3 shows how the QoS-aware cluster is
implemented with a number of clustered QaAS nodes.

This figure shows that every clustered node incorporates a
replica of the Configuration Service, Monitoring Service,
and Load Balancing Service, each implemented and
integrated into the JBoss application server as an MBean.
Only one node in the cluster is responsible for SLA
enforcement, monitoring, and load balancing. We term this
node the cluster Leader. The remaining nodes, called slave
nodes, are used as backup servers in case the Leader
crashes.

Possible Leader crash during configuration (or
runtime reconfiguration) is detected by the Configuration
Services in the slave nodes through their (local) Monitoring
Services. These Monitoring Services are alerted of the

Leader’s crash by the underlying group communication
mechanism, namely, JGroups , included in the standard
JBoss application server. JGroups [2] provides the clustered
nodes with reliability properties that include lossless
message transmission, message ordering, and atomicity. As
a result, should Leader crash occur, the following simple
recovery protocol is performed by the Configuration
Service instances deployed in the slave nodes. Every
Configuration Service is identified by a unique identifier
(ID) consisting of the IP address of the machine where the
Configuration Service is deployed. In addition, all
Configuration Services have a consistent cluster

configuration state object; this is the resource plan object
mentioned earlier and consists of a list of the IDs of the
available clustered nodes. When Leader crash is detected
by the slave Monitoring Services, the latter inform their
local Configuration Services that a new Leader must be
elected. The Configuration Services examine the IDs of the
available nodes in the cluster configuration state and elect
the server with the minimum ID as the new Leader. Note
that, owing to the JGroups reliability properties mentioned
earlier, all clustered nodes have a consistent view of the
current cluster membership; hence, they can easily apply
the simple deterministic algorithm for Leader election
introduced above.

Fig 3 QOS aware application server

The first election of the cluster Leader is triggered by
the hosting SLA deployment. In fact, the QaAS node where
that deployment occurs becomes the Leader. The
Configuration Service in the Leader node parses the input
hosting SLA to extract the QoS parameters that guide the
required cluster configuration (client requestRate,
serviceAvailability, efficiency); it then makes them
available to the Monitoring Service responsible for
checking cluster performance. For this purpose, the
Monitoring Service is constructed out of three components:
SLA Violations Monitor, Evaluation and Violation
Detection Service, and Cluster Performance Monitor.

In general, these components interact with each other
to implement a monitoring mechanism capable of
dynamically adapting to modifications of both the client
load characterization and node operational conditions. In
our implementation, we assume that node performance
degradation can be due to the load imposed by other
services running on the nodes (nodes can concurrently host
and run services other than QaAS).

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
225X; pISSN: 2321-2241 Volume: 1; Issue: 8; December–2013

eISSN: 2321-

www.ijcrd.com Page 32

The above-mentioned Monitoring components are
invoked when incoming client requests are intercepted by
the Load Balancing Service. These requests are intercepted
by a LoadBalancingFilter implemented using the Servlet
Filter technology [17]. The main responsibilities of the
Monitoring components can be summarized as follows:
The SLA Violations Monitor is responsible for verifying
whether or not the SLA efficiency attribute is met within
the SLA efficiency validity period. When violations of the
hosting SLA occur 4.1 4.1 Experimental Evaluation

The prototype described above has been used to
carry out a set of experiments aimed at assessing 1) the
overhead introduced by our middleware services in the
JBoss application server, 2) the scalability properties of our
QoSaware cluster, and 3) the resource optimization
achievable in a QoS-aware cluster, while honoring the
hosting SLA.

In a test of several Linux machines interconnected by a
dedicated 1 Gb Ethernet LAN. Each machine is a 2.66 Ghz
Intel Xeon processor, equipped with 2 GB RAM. In the
experiments described below, one of these machines is
dedicated to host the cluster Leader; the other machines are
used to host either the QaAS slave nodes serving the client
requests or the client program used to generate artificial
load in the cluster. In addition, a dual-processor machine is
dedicated to hosting the database used in the experimental
evaluation, namely MySQL .

As for the client program, we implemented our own
program in order to 1) specify a variety of client load
distributions, 2) specify different client request rates, and 3)
simulate typical behavior of common browsers by enabling
caching of the static contents of the HTTP client requests.

QaAS Overhead Evaluation

First concern was to assess whether our middleware
services were adding unnecessary overhead to the cluster
response time and throughput, in the absence of failures.
For this purpose, we instantiated the middleware services in
the cluster introduced earlier and used from one up to four
QaAS nodes. With these configurations, we ran two sets of
tests. In the first set, we directly injected equally distributed
artificial client requests to each available standard JBoss
node. In the second set of tests, we deployed the hosting
SLA, thereby enabling our services and directed the client
requests to the Load Balancing Service.Note that
introducing a reverse proxy implies performance penalties;
however, these are balanced by the HTTP protocol
optimizations performed by the Load Balancing Service.
Similar results can be obtained with advanced HTTP
reverse proxies such as Apache HTTP server with mod_jk
.To conclude this section, we measured the whole system.

QaAS Scalability Evaluation

The second experiment was conducted to evaluate the
scalability of the QoS-aware cluster we had developed. In
this experiment, we varied the number of nodes in the
cluster starting by one node, scaling up to four nodes. The
obtained results are shown in Table 1. It is clear that, by
augmenting the number of QaAS clustered nodes, QaAS
does scale, even if not in an entirely linear fashion. In fact,
as evident in Table 1, for two nodes, throughput is exactly
double compared to the value obtained with one node. With
three and four nodes, throughput keeps on augmenting,
although not linearly. We identified the cause of this
behavior in the database, which becomes a bottleneck. Note
that the Load Balancing Service could not have caused
these performance anomalies, as throughput is below the
450 requests per second mentioned in the previous section.

Resource Utilization Evaluation

The purpose of this final experiment was to assess the
ability of our middleware to optimize clustered nodes
utilization without causing hosting SLA violations. In
carrying it out, we assumed that the absence of dynamic
clustering techniques (such as those enabled by QaAS)
means a resource overprovision policy is used. This
statically allocates as many nodes as possible to ensure
honoring the hosting SLA. The maximum number of nodes
available was fixed to four. Therefore, in an over-provision
policy, all four nodes are used; in contrast, to honor the
bookshop hosting SLA, our middleware allowed us to
dynamically allocate a minimum of one up to four clustered
QaAS nodes depending on the imposed load at different
time intervals. For the purposes of this experiment, nodes
were made available in a pool of spare nodes ready to be
included in the cluster as required. cluster following a
simple request distribution: Our program client gradually
raised bookshop application HTTP request rate up to 360
requests per second; the load then gradually decreased to 2
requests per second. The bold line in Fig. 4 shows this
distribution. It follows that, if no QaAS is being used, the
standard JBoss clustering approach has to allocate all four

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
225X; pISSN: 2321-2241 Volume: 1; Issue: 8; December–2013

eISSN: 2321-

www.ijcrd.com Page 33

available nodes and maintain them
allocated to the bookshop application for the
entire duration of the test,

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
eISSN: 2321-225X; pISSN: 2321-2241 Volume: 1; Issue: 8; December–2013

regardless of the actual client load. In other words, it needs
resource overprovision (see the lighter area in Fig. 4),
which guarantees the hosting SLA is met. In contrast,
QaAS dynamically adjusts the cluster size as necessary,
augmenting the number of clustered nodes as load increases
and releasing nodes as load decreases, as illustrated by the
darker area in Fig. 4. In conclusion, to offset SLA
violations, the QaAS trend in resizing the cluster follows
the distribution of the imposed load, as shown in Fig. 4 (yet
again, the darker area mentioned above). In this test, we
also measured the percentage of SLA violations (see Fig.
5).

Fig 4. Resource Utilization

Fig 5.SLA Violation

Conclusion: In our architecture, the size of the cluster can
change at runtime, in order to meet nonfunctional
application requirements specified within what we have
termed a hosting SLA. The experimental results we have
presented show the effectiveness of our approach; in
particular, they show that the efficient use of resources and
the strict constraints imposed by the SLA can be addressed
by means of dynamic reconfiguration mechanisms even in
the case of such complex systems as a cluster of J2EE
applications.We are investigating issues of dynamic
resource management when multiple applications are

concurrently deployed in a J2EE server cluster; these
applications have their own hosting SLAs and compete for
the use of the same clustered nodes.

REFERENCES

[1] “Service Level Agreement (SLA),” http://www.
wilsonmar.com/ 1websvcs.htm, 2006.

[2] T. Abdellatif, E. Cecchet, and R. Lachaize, “Evaluation
of a Group Communication Middleware for Clustered J2EE
Application

Servers,” Proc. Int’l Symp. Distributed Objects and
Applications (DOA ’04), Oct. 2004.

[3] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M.
Kalantar, S. Krishnakumar, D.P. Pazel, J. Pershing, and B.
Rockwerger, “Oceano-SLA Based Management of a
Computing Utility,” Proc. Seventh IFIP/IEEE Int’l Symp.
Integrated Network Management (IM)

May 2001.

[4] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster

Reserve: A Mechanism for Resource Management in
Cluster-Based Network,” Proc. ACM SIGMETRICS Conf.,
June 2000.

[5] J. Balasubramanian, D.C. Schmidt, L. Dowdy, and O.

Othman, “Evaluating the Performance of Middleware Load
Balancing Strategies,” Proc. Eighth Int’l IEEE Enterprise
Distributed Object Computing Conf. (EDOC ’04), Sept.
2004.

[6] “WebLogic Clustering,” BEA Systems, http://e-
docs.bea.com/ wls/docs81/cluster/, 2006.

[7] “BEA WebLogic Server 8.1 Overview: The Foundation
for Enterprise Application Infrastructure,” BEA Systems,
Aug. 2003.

[8] S. Bouchenak, F. Boyer, E. Cecchet, S. Jean, A.

Schmitt, and J.B. Stefani, “A Component-Based Approach to
Distributed System Management—A Use Case with Self-
Manageable J2EE Clusters,” Proc. 11th ACM SIGOPS
European Workshop, Sept. 2004.

[9] M.J. Buco, R.N. Chang, L.Z. Luan, C. Ward, J.L. Wolf,
and P.S. Yu, “Utility Computing SLA Management Based
Upon Business Objectives,” IBM Systems J., 2004.

[10] ObjectWeb home page, ObjectWeb Consortium,
http://www. objectweb.org, 2006.

www.ijcrd.com Page 34

http://e-

