
International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 2; February - 2014

www.ijcrd.com Page 28

Detailed Design Flow for Partial Reconfiguration
Kunal Yogeshkumar Parikh

Asst. Professor, Department of ECE
AMC Engineering College

18th K. M, Bannerghatta Road,
Bangalore-560083, Karnataka, India
parikhykunal@gmail.com

ABSTRACT
With the rapid development of VLSI Technology, FPGA
exposed many limitations at the area, speed, power, and
chip capacity. Newer Xilinx FPGAs (few Spartan &
Virtex series) provides the possibility to be reconfigured
by Dynamic Partial Reconfiguration (DPR) technique.
DPR is defined as the ability of a single system to get
reconfigured to perform multiple applications. The main
contribution of this paper is in proposing a complete
design flow of the partial reconfiguration technology
which analyzed on Xilinx Virtex -5 ML507 Board. It is
shown in the experiment that flexibility of the system
was improved greatly by the dynamic partial
reconfiguration.

Keywords
FPGA; Dynamic Partial Reconfiguration; Virtex-5
ML507 Board

1. INTRODUCTION
FPGAs have come a long way from mere glue-logic
applications of interconnecting discrete components to
get higher performance from reconfigurable processors.
Today, FPGAs are even used in high energy physics
experiments like ALICE1 at CERN2 (although they are
not very radiation tolerant), due to the possibility to
easily do future upgrades of the electronics [1]. Beyond
that, newer Xilinx FPGAs (few Spartan & Virtex series)
provides the possibility to be reconfigured by Partial
Reconfiguration technique.

Reconfigurable systems can be designed using various
methods with different ways of getting the system
reconfigured. Reconfigurable computing is first classified
into two categories which are Full reconfiguration and
Partial reconfiguration. Partial Reconfiguration again
classified into another two categories which are, Static
and Dynamic Partial Reconfiguration. Static partial
reconfiguration allows a portion of FPGA to be
reconfigured, but during this process the remaining part
of FPGA is in shutdown mode and Dynamic partial
reconfiguration allows a portion of FPGA to be
reconfigured while the remaining part of FPGA is under
operation without any loss of data.

In this paper Xilinx Virtex5 ML507 FPGA platform as
the hardware platform in the research and design the
reconfigurable module and assembled the system
functions. Besides, by the use of bus macro technic
solves the communication problem of the static module
and reconfigurable, and based this way can more
effectively control the implementation of the
reconfiguration operation [Flow Paper]. During the
experiment, we observed the key steps of the partial
reconfigurable technique and proposed the detailed
design flow of the Same on Xilinx Virtex 5 Family Chip

2. RELATED WORK
2.1 Reconfigurable System with FPGA
Reconfigurable system is defined as the ability of a
single system to get reconfigured to perform multiple
applications

2.1.1 FPGA
In 1985, the first commercially viable field
programmable gate array (FPGA) was invented by
Xilinx. It had programmable gates and programmable
interconnects between gates. The most important
difference to CPLDs is that FPGAs are based on lookup
tables (LUTs) instead of logic arrays. The LUTs are
realized via static random access memory (SRAM) cells
because of its volatile nature, the SRAM cells must be
loaded with configuration data each time an FPGA
powers up. The configuration of the FPGAs could be
changed in order to enhance or change the functionality
of the chip and even to remove bugs [2]

The CLB is the basic logic unit in a FPGA. Exact
numbers and features vary from device to device, but
every CLB consists of a configurable switch matrix with
4 or 6 inputs, multiplexer circuitry etc, and flip-flops.
The switch matrix is highly flexible and can be
configured to handle combinatorial logic, shift registers
or RAM. While the CLB provides the logic capability,
flexible interconnect routing routes the signals between
CLBs and to and from I/Os. Routing comes in several
flavors, from that designed to interconnect between
CLBs to fast horizontal and vertical long lines spanning
the device to global low-skew routing for Clocking and
other global signals. The detailed Architecture of FPGA
is shown in Figure 1.

www.ijcrd.com
mailto:parikhykunal@gmail.com

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 2; February - 2014

www.ijcrd.com Page 29

Figure 1: FPGA Architecture

The logic and routing elements in an FPGA are
controlled by programming points, which may be based
on Static Random Access Memory (SRAM), Antifuse, or
Flash technology. After a design has been compiled,
designer can program the FPGA to perform a specified
computation by loading the bitstream into it. The SRAM-
based FPGAs can be configured any number of times to
provide additional implementation flexibility for further
tailoring the implementation to lower cost and make
better use of the device. Most current commercial FPGAs
use volatile static-RAM (SRAM) bits connected to
configuration points to configure the FPGA [3]

2.1.2 SRAM Technology
The most widely used method for storing

configuration information in commercially available
FPGAs is volatile static RAM (SRAM). This method has
been made popular because it provides fast and infinite
reconfiguration in a well-known technology.

Figure 2: Programming Bit for SRAM based FPGA

For reconfigurable computing, SRAM-based FPGAs are
used. In these devices, every routing choice and every
logic function is controlled by a simple memory bit. With
all of its memory bits programmed, by way of a
configuration file or bitstream, an FPGA can be
configured to implement the user’s desired function.

Thus, the configuration can be carried out quickly and
without permanent fabrication steps, allowing
customization at the user’s electronics bench, or even in
the final end product.

2.2 Approaches for Partial
Reconfiguration

There are three approaches to design
Reconfigurable Systems
1. Reconfiguration using JTAG
2. Reconfiguration using RS232
3. Auto Reconfiguration

2.2.1. Reconfiguration using JTAG

Figure 3 illustrates the external reconfiguration of
FPGA using JTAG, wherein it is not mandatory to use a
soft core processor like Microblaze. Though PlanAhead
is used to allocate same hardware resources for different
modules, but whenever there is a need to reconfigure the
FPGA, the corresponding bitstream file is loaded through
JTAG onto FPGA.

Figure 3: Reconfiguration using JTAG [4]

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 2; February - 2014

www.ijcrd.com Page 30

2.2.2 Reconfiguration using RS232
The RS-232, is a legacy, full duplex, wired,

Asynchronous Serial Communication Interface. It
extends the UART communication signals for external
data communication. RS 232 interface defines various
handshaking and control signals for communication apart
from transmit and receive signal lines for data
communication.

Figure 4 illustrates the reconfiguration of
FPGA using external RS232 interface, which can be
either from another microcontroller or desktop PC.
Commands for reconfiguring the FPGA to perform
different functionalities are passed through RS232
interface. For this case, Microblaze soft core processor is
embedded into the FPGA to perform the operations of
reconfiguration based on inputs received through RS232
port and hardware Internal Configuration Access Port
(ICAP) provides access to load the partial bitstream files
from compact flash onto FPGA.

Figure 4: Reconfiguration using RS232 [4]
.

2.2.3. Auto Reconfiguration
Figure 5 illustrates the most commonly sought

form of reconfiguration, self or auto reconfiguration of
FPGA. In this case, the FPGA reconfigures itself to
perform functionality, either after predefined time
duration or based on a status flag. Microblaze soft
processor and ICAP interface are used for this case too,
but the use of UART interface is not mandatory.

Figure 5: Auto Reconfiguration [4] Figure 6: Method to generate Netlist File form Xilinx
Software

3. DYNAMIC PARTIAL
RECONFIGURATION
3.1 PR Design Flow

3.1.1 Top Level Design Flow

The top level design flow for Partial Reconfiguration is
shown in Figure 11 and the steps are as follows

1. Create a processor system using Xilinx Platform
Studio
2. Generate .elf from Software Design Kit
3. Add a processor system in ISE Create PR project and
create various configurations for partial reconfigurations
in PlanAhead
4. Generate full and partial reconfiguration bitstreams
and system.ace files which can be stored on a Compact
Flash memory

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 2; February - 2014

www.ijcrd.com Page 29

5. Configure an FPGA using a Compact Flash memory
card and run user application

3.1.2 Detailed Design Flow

The detailed design flow for Partial Reconfiguration is
shown in Figure 7 and the steps are as follow
1. First generate netlist (.ngc) file for all dynamic
modules as well static module

There are two Methods to generate Netlist, which are
A). The method to generate .ngc (Netlist) file form the
project navigator by writing VHDL/Verilog Code is
shown in below Figure 6

The Project Navigator is also required to generate top
level netlist file and user constraint file where it
combines dynamic as well as static along with system
components. This top level netlist is used by PlanAhead.

B). The process to generate netlist file from MATLAB is
shown in below Figure 7. Here, The System Generator is
a DSP design tool from Xilinx that enables the use of the
MathWorks model-based Simulink design environment
for FPGA design. System Generator provides a system
integration platform for the design of DSP FPGAs that
allows the RTL, Simulink, MATLAB and C/C++
components of a DSP system to come together in a single
simulation and implementation environment. It supports
a black box block that allows RTL to be imported into
Simulink and co-simulated with either ModelSim or
Xilinx® ISE® Simulator. System Generator also
supports the inclusion of a MicroBlaze embedded
processor running C/C++ programs [4]. The Module is
made for particular application in MATLAB where
system generator will be used to generate direct netlist
file from the MATLAB. Designs are captured in the
DSP friendly Simulink modeling environment using a
Xilinx specific blockset. The Xilinx blockset is a library
of arithmetic, logic and DSP functions under Simulink,
useful for design simulation and verification [5].

Figure 7: Method to generate Netlist File form
MATLAB Software

2. Create a processor system using Xilinx Platform
Studio to generate system components

Xilinx Platform Studio (XPS) software is used
to build, connect and configure embedded processor
based FPGA system. The Microblaze Processor System
Block Diagram is shown in below Figure 8. The PLBv46
bus and the MicroBlaze processor run at a frequency of
100 MHz and the DDR2 runs at 200 MHz in this system
[6]

Figure 8: MicroBlaze Processor System Block
Diagram

The system.xmp file will be created here and is
used in Project navigator for top module. This will
generate system_stub.bmm as well as
system_stub_bd.bmm that are used in planahead and
Bash Shell respectively to link with processor. It is used
to generate .ngc file for top module. The complete XPS
function is shown in Figure 9.

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 2; February - 2014

www.ijcrd.com Page 30

Figure 9: XPS function [7]

3. Open SDK from XPS to generate executable file
Xilinx Software Development Kit (SDK) is

used to develop C/C++ Embedded software application
where CF2ICAP command is used to fetch bit files from
compact flash memory and load into FPGA using ICAP.
SDK imports and compiles the provided source files and
generates executable (.elf) File which will be used for
generating system.ace file [7]

4. Add a processor system in ISE along with top VHDL
coding and generate netlist (.ngc) file for this

VHDL coding contains static, dynamic and
System (Processor) components

5. Create a PlanAhead PR project
PlanAhead software is used to floorplan the

design. It required netlist files of the dynamic, static and
top level modules. It manages the modules and
categorizes them into reconfigurable modules. Full and
Partial bitstream files are generated using PlanAhead
after verification of all reconfiguration modules. Figure
10 shows the FPGA Design planner of the reconfigurable
system where reconfigurable block has not been selected.
User can select only single or ‘n’ number of
reconfigurable blocks depend upon the requirements.

Figure 10: FPGA Floorplan for reconfigurable
systems

6. Use bash shell
To generate download.bit file
To generate system.ace file, using generated
download.bit file

7. Configure an FPGA using a Compact Flash memory
card and run user application

Figure 11: Detailed PR Design Flow

4. RESULT
The experimental hardware platform is Virtex5
XC5VFX70T FPGA ML507 development kit from
Xilinx and the software development environment is
Xilinx Design Suite 12.4. When the application calls
from hyperlink for the hardware function, the system first
checks the corresponding IP module whether configured
in the FPGA, if the configuration exists and the FPGA
will run it directly; otherwise the system read
corresponding part of the configuration bitstream file

from compact Flash memory/card to the on chip buffer at
first, and then generate the hardware function after the
reconfiguration by the Internal Configuration Access
Port. One of the goals of a run-time configurable system
is to encapsulate the reconfigurable system into a
portable application which satisfies by DPR.

www.ijcrd.com

International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 2; February - 2014

www.ijcrd.com Page 31

5. CONCLUSION
In the process of reconfigurable system development,
drawing on the module design techniques, we have
discussed in detail system hardware realization by three
different approaches. The communication between
reconfiguration and static module is realized by slice
based on bus macro, it is better than the traditional
TBUF-based bus macro. By Dynamic Partial
Reconfiguration method, system reaches number of
advantages which are, Application Portability. Hardware
Reuse and reduces SWaP (Size-Weight-Power)

6. REFERENCES
[1] Norbert Abel, Sebastia, Manz, Frederik Grüll,
“Increasing Design Changeability Using Dynamic Partial
Reconfiguration”, IEEE transactions on nuclear science,
VOL. 57, NO. 2, APRIL 2010.

[2] Wang Lie, Wu Feng-yan, “Dynamic partial
reconfiguration in FPGAs”, Third International
Symposium on Intelligent Information Technology
Application IEEE 2009, pp 445-448.

[3] Scott Hauck, Andre Dehon, “Reconfigurable
Computing”, Morgan Kaufmann Publishers, 2008, pp
16-20.

[4] Kunal Yogeshkumar Parikh, et al., “Design and
Evalution of N module Reconfigurable System”,
Springer 2014, Volume 243, pp-259-266

[5] Xilinx, Inc. UG639: System Generator for DSP User
Guide, Version 14.3, October 16, 2012.

[6] Xilinx, Inc. EDK Microblaze Tutorial, Version 2.0,
9/2003.

[7] EDK overview, Xilinx Slides Presentation, August
2004

[8] Xilinx, Inc. UG744: Partial Reconfiguration of a
processor peripheral tutorial user guide, Version 14.1,
April 24, 2012.

[9] Xie D., “A Design Flow for FPGA Partial Dynamic

Reconfiguration”, Second International Conference
on Instrumentation & Measurement, Computer,
Communication and Control, IEEE 2012, pp 119-123.

[10] Xilinx, Inc. UG347: ML505/ML506/ML507
Evaluation Platform User Guide, Version 3.1.2, May
2011.

www.ijcrd.com

