
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 34

PERFORMANCE EVALUATION OF FPGA BASED MASKED AES

TECHNIQUES FOR STORAGE AREA NETWORK
 Navin S. M Dr. P. A. Vijaya
 4th Sem M.Tech Student, Dept. of ECE Professor, Dept of ECE

 BNMIT, Bangalore-560070 BNMIT, Bangalore-560070

 navsm007@gmail.com pavmkv@gmail.com

ABSTRACT-Storage area networks are used in government

and industry to store large amount of data while assuring

availability and access to that data and security. In order to

protect “data-at-rest” in storage area networks from the risk

of differential power analysis attacks without degrading

performance, a high-throughput masked advanced

encryption standard (AES) engine is proposed. However,

this engine usually adopts the unrolling technique which

requires extremely large field programmable gate array

(FPGA) resources, high computational time. This research

work aims to optimize the area with reduce computation

time and high throughput for a masked AES with an

unrolled structure. This is achieved by mapping its

operations from GF(2
8
) to GF(2

4
) as much as possible. The

number of mapping GF(2
8
) to GF(2

4
) and inverse mapping

GF(2
8
) operations of the masked SubBytes step are reduced

from ten to one. In order to be compatible, the masked

MixColumns, masked AddRoundKey, and masked

ShiftRows including the redundant masking values are

carried over GF(2
4
). Masking and mapping techniques

increases computational time which leads to usage of

pipelining techniques to reduce the computational time. A

FPGA block RAM (BRAM) is used to further reduce

hardware resources.

 Keywords: Advanced Encryption Standards (AES),

Differential Power Analysis (DPA), Field Programmable Gate

Array (FPGA), Masking, Storage Area Network (SAN).

1. INTRODUCTION

Securing data from accidental or malicious disclosure, whether

it is data-in-transit or data-at-rest, is critical to the mission of any

organization. SAN security should be carefully considered and

then implemented in accord with all applicable security policies.

One important type of SAN is the Fibre Channel SAN used for

the rapid transfer of data between servers and FC storage

devices via FC switches. Information should be

cryptographically protected in SANs when it is at rest on a FC

storage devices, To protect data-in-transit encrypt data-in-transit

and all communication between FC devices. To protect data-at-

rest the data should be encrypted before arriving at its destined

storage device. This requires the use of special purpose

appliances that can encrypt the data that is being sent to a

storage device. These applications need not only the protection

at both the protocol level and the physical level but also high-

throughput implementation. For Example, it needs upto 40

Gbit/s throughput for a four port host bus adapter connected by

fiber cables. The information leakage includes power

consumption, timing and fault detection.

 In 1999, Kocher et al. first broke the normal advanced

encryption standard (AES) by means of power analysis attacks.

Later, the differential power analysis (DPA) attack was further

developed as one of the most promising power analysis attacks.

From then on, numerous efforts have been devoted to the

development of efficient countermeasures for the AES

implementations against DPA attacks. Two representatives are

the multiplicative masking and the Boolean masking. They both

try to remove the correlation between the power consumption

and the secret keys. The multiplicative masking can be realized

by using either standard CMOS cells at the gate level or

nonstandard CMOS cells. On the other hand, the Boolean

masking can be easily realized at the algorithmic level and is

immune to DPA and glitch attacks. The Boolean masking has

the advantage of easy implementation because it does not need

extra specific hardware. The Boolean masking is a good

candidate to be applied to the AES in SANs, but if we directly

apply it to the AES, one masked AES S-box over GF(2
8
) with

two 8-bit input and output mask needs to store GF(2
8
) to GF(2

4
).

Therefore, for a whole 128-bit masked AES with unrolled

architecture, it needs to store around 2952.8 Mbytes. This is too

big to be fit into any FPGA.

 In this paper, we develop mapping technique to perform the

masked AES mainly over GF(2
4
). In addition we map masked

S-box onto block RAM which reduces area. We use pipelining

technique in order to meet the throughput of high throughput for

SANs. We also perform masked AES in different modes of

operation. Finally we compare all the techniques used to develop

masked AES and conclude accordingly.

2. LITERATURE SURVEY

To carry out this research work, a thorough literature survey was

done. It has been briefly explained in this section. In this paper

“Efficient implementation of Rijndael encryption in

reconfigurable hardware: Improvements and design tradeoffs,”

2003[6], performance evaluation of the Advanced Encryption

Standard candidates has led to intensive study of both hardware

and software implementations. However, although plentiful

papers present various implementation results, it seems that

efficiency could still be greatly improved by applying good

design rules adapted to devices and algorithms. This paper

addresses various approaches for efficient FPGA

implementations of the Advanced Encryption Standard

algorithm. As different applications of the AES algorithm may

require different speed/area tradeoffs, we propose a rigorous

study of the possible implementation schemes, but also discuss

design methodology and algorithmic optimization in order to

improve previously reported results. In the paper “A 21.54

Gbits/s fully pipelined processor on FPGA,” 2004[10] presents

the architecture of a fully pipelined AES encryption processor

mailto:navsm007@gmail.com
mailto:pavmkv@gmail.com

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 35

on a single chip FPGA. By using loop unrolling and inner-round

and outer-round pipelining techniques, a maximum throughput

of 21.54 Gbits/s is achieved. A fast and an area efficient

composite field implementation of the byte substitution phase is

designed using an optimum number of pipeline stages for FPGA

implementation. A 21.54 Gbits/s throughput is achieved using

84 block RAMs and 5177 slices of a VirtexII-Pro FPGA with a

latency of 31 cycles and throughput per area rate of 4.2

Mbps/Slice. [11] “Successfully attacking masked AES hardware

implementations,” 2005. During the last years, several masking

schemes for AES have been proposed to secure hardware

implementations against DPA attacks. In order to investigate the

effectiveness of these countermeasures in practice, we have

designed and manufactured an ASIC. The chip features an

unmasked and two masked. It turns out that masking the AES S-

Boxes does not prevent DPA attacks, if glitches occur in the

circuit. In the paper “A side-channel analysis resistant

description of the AES S-box,” 2005[12] presents efficient

algorithmic countermeasures to secure the AES algorithm

against (first-order) differential side-channel attacks which has

been very expensive to implement. In this article, we introduce a

new masking countermeasure which is not only secure against

first-order side-channel attacks, but which also leads to

relatively small implementations compared to other masking

schemes implemented in dedicated hardware. Our approach is

based on shifting the computation of the finite field inversion in

the AES S-box down to GF(2
4
).

3. EXISTING METHODS
3.1 AES

 AES has been adopted by the U.S. government and is now

used worldwide. It supersedes the Data Encryption Standard

(DES), which was published in 1977. The algorithm described

by AES is a symmetric-key algorithm, meaning the same key is

used for both encrypting and decrypting the data. AES is based

on a design principle known as a substitution-permutation

network, and is fast in both software and hardware. Unlike its

predecessor DES, AES does not use a Feistel network. The basic

information unit for treatment in the AES algorithm is a series of

eight bits processes considered as a single unit. The bit series

corresponding to the input, the output and the cipher key are

processed as arrays of bytes; called State. The State array

consists of four columns of bytes, and every column contains 4

bytes. The AES algorithm operates in rounds and support three

different key lengths, 128, 192, and 256 bits; the standard will

consider only 128-bit as legal block length. The number of these

rounds is chosen depending on the key size. In fact, for a key

length equal to 128, 192 or 265 the number of rounds is equal to

10, 12 and 14, respectively. i.e.,10 cycles of repetition for 128-

bit keys, 12 cycles of repetition for 192-bit keys, 14 cycles of

repetition for 256-bit keys.

3.2. Masked AES WITH 6 PIPELINE STAGES

In a masked AES, a random mask is added to the input data of

the algorithm prior to encryption. At the end of the encryption,

the mask is removed to get the correct result. In order to remove

the mask, we need to keep track how the mask is modified by

the algorithm. Figure 2.1 shows this basic principle add random

mask remove random mask Masked Algorithm Plaintext Cipher

text Mask Modification Random Mask Cipher Key Figure 2.1.

Basic masking principle masking the linear AES functions is

easy. Because these functions are linear, applying them on a

masked value A+ X, gives the same result as applying them first

on the data A and then on the mask X: f (A+X) = f (A)+ f (X).

Fig 2.1 Basic Masking Principle

The SubBytes transformation is composed of a multiplicative

inversion in GF() and an affine transformation. Masking the

non-linear byte inversion is tricky because Inv(A+X)

Inv(A)+Inv(X). Without modification, the result of the byte

inversion is () and thus it is not possible to remove the

mask at the end of the algorithm easily. Therefore, a modified

byte inversion is required such that the result of the inversion

equals +X. Multiplicative masking, which was presented by

Akkar et al., is based on the idea that prior to the byte inversion

the additive mask X is replaced by the multiplicative mask Y.

After the byte inversion, the multiplicative mask is replaced by

the additive mask again. As it can be seen in Figure 2.2,

SubBytesAkkar requires four multipliers, two inversions and

two additions in GF(). Therefore, it is already clear that

masking leads to a noticeable increase in terms of area viewed

as a multiplication by a particular MDS matrix in a finite field.

Fig 2.2 Modified Byte Inversion SubByteAkkar[7]

 The Boolean masking is a good candidate to be applied to the

AES in SANs, but if it is directly applied to the AES, one

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 36

masked AES’s S-box over GF() with two 8-bit input and

output masks needs to store 28 × 28 × 256 bytes (16.8 Mbytes).

Therefore, for a whole 128-bit masked AES with an unrolled

architecture, it needs to store around 2952.8Mbytes. This is too

big to be fit into any field programmable gate array (FPGA). To

have a feasible FPGA implementation, one possible way is to

transform the S-box computation of a masked AES from GF()

to GF().

 Techniques to optimize the area of a masked AES for SANs

are developed and the masked AES mainly over GF() are

performed, and the related operations like the masked

MixColumns, masked AddRoundKey, and masked ShiftRows

including redundant masking values are all calculated over

GF(24). Therefore, there is only need to transform the input

values from GF () to GF() and transform the output values

back from GF() to GF() once.

 In the Boolean masking implementation, the intermediate

value x is concealed by exclusive ORing it with the random

mask m. In the round function of the AES, ShiftRows,

MixColumns, and AddRoundKey are linear transformations,

while SubBytes is the only nonlinear transformation of the AES.

We define the linear transformations as Oper; then, the masked

Oper can be written as Oper(x ⊕ m)=Oper(x) ⊕ Oper(m).

However, the masked nonlinear transformation SubBytes has the

characteristic as S-box(x ⊕ m)’ = S-box(x) ⊕ S-box(m). In

order to mask the nonlinear transformation, a new S-box,

denoted as S-box’, is recomputed as S-box (x ⊕ m) = S-box(x)

⊕ m, where m and m’ are the input and output masks of

SubBytes. Usually, throughputs can be significantly improved

by inserting pipeline registers for latency careless designs. For

each masked AES’s round, six-stage pipelines are inserted to

enhance the throughputs. Three pipelines to each round of the

masked AES, called outer three pipelines, are inserted as shown

in Fig. 1. The pipeline registers are inserted at the output of each

transformation. Note that the maximum pipelined stages for our

proposed design is six. In order to be compatible with the

encryption procedure, six-stage pipelines are inserted to the key

expansion in order not to affect the critical path of the main

encryption.

4. PROPOSED MASKED AES METHODS

WITH UNROLLED ARCHITECTURE &

PIPELINING TECHNIQUE

4.1 Masked AES with reduced computation time
Techniques have been generated to reduce the computation time

using 10 pipeline stages with the trade-off with area. Using 10

pipeline stages greatly reduces the computation time but the area

is increased as compared to 6 pipeline stage technique. Another

method is to reduce the shift row operation and mix column

without any effects on security.

4.2. Masked AES in CBC and PCBC mode

CIPHER-BLOCK CHAINING (CBC)

In CBC mode, each block of plaintext is XORed with the

previous ciphertext block before being encrypted. This way,

each ciphertext block depends on all plaintext blocks processed

up to that point. To make each message unique, an initialization

vector must be used in the first block. If the first block has index

1, the mathematical formula for CBC encryption is

Ci = Ek (Pi + Ci-1), C0 = IV

Fig.1 Proposed masked AES with an unrolled architecture of

Masked AES with pipelining technique

while the mathematical formula for CBC decryption is

Pi = Dk (Ci) + Ci-1, C0 = IV

Fig. 4.1 Cipher block chaining mode encryption [7]

CBC has been the most commonly used mode of operation. Its

main drawbacks are that encryption is sequential (i.e., it cannot

be parallelized), and that the message must be padded to a

multiple of the cipher block size. One way to handle this last

issue is through the method known as cipher text stealing. Note

http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Initialization_vector
http://en.wikipedia.org/wiki/Initialization_vector
http://en.wikipedia.org/wiki/Ciphertext_stealing

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 37

that a one-bit change in a plaintext or IV affects all following

cipher text blocks. Decrypting with the incorrect IV causes the

first block of plaintext to be corrupt but subsequent plaintext

blocks will be correct. This is because a plaintext block can be

recovered from two adjacent blocks of cipher text. As a

consequence, decryption can be parallelized. Note that a one-bit

change to the cipher text causes complete corruption of the

corresponding block of plaintext, and inverts the corresponding

bit in the following block of plaintext, but the rest of the blocks

remain intact.

PROPAGATING CIPHER-BLOCK CHAINING

(PCBC)

Fig. 4.2 Propagating Cipher block chaining mode encryption [7]

The propagating cipher-block chaining or plaintext cipher-block

chaining mode was designed to cause small changes in the

ciphertext to propagate indefinitely when decrypting, as well as

when encrypting.

Fig. 4 Proposed masked AES with an unrolled architecture in

CBC mode and PCBC mode

4.3 Masked AES in CBF and OBF mode

CIPHER FEEDBACK MODE (CFB)

 The cipher feedback (CFB) mode, a close relative of CBC,

makes a block cipher into a self-synchronizing stream cipher.

Operation is very similar; in particular, CFB decryption is

almost identical to CBC encryption performed in reverse:

Ci = Ek (Ci-1) Pi , Pi = Ek (Ci-1) Ci , C0 = IV

Fig 4.3 Cipher Feedback Mode Encryption

This simplest way of using CFB described above is not any

more self-synchronizing than other cipher modes like CBC. If a

whole blocksize of ciphertext is lost both CBC and CFB will

synchronize, but losing only a single byte or bit will

permanently throw off decryption. To be able to synchronize

after the loss of only a single byte or bit, a single byte or bit

must be encrypted at a time. CFB can be used this way when

combined with a shift register as the input for the block cipher.

To use CFB to make a self-synchronizing stream cipher that will

synchronize for any multiple of x bits lost, start by initializing a

shift register the size of the block size with the initialization

vector. This is encrypted with the block cipher, and the highest x

bits of the result are XORed with x bits of the plaintext to

produce x bits of ciphertext. These x bits of output are shifted

into the shift register, and the process repeats with the next x bits

of plaintext. Decryption is similar, start with the initialization

vector, encrypt, and XOR the high bits of the result with x bits

of the ciphertext to produce x bits of plaintext. Then shift the x

bits of the ciphertext into the shift register. This way of

proceeding is known as CFB-8 or CFB-1 (according to the size

of the shifting). If x bits are lost from the ciphertext, the cipher

will output incorrect plaintext until the shift register once again

equals a state it held while encrypting, at which point the cipher

has resynchronized. This will result in at most one blocksize of

output being garbled. Like CBC mode, changes in the plaintext

propagate forever in the ciphertext, and encryption cannot be

parallelized. Also like CBC, decryption can be parallelized.

When decrypting, a one-bit change in the ciphertext affects two

plaintext blocks: a one-bit change in the corresponding plaintext

block, and complete corruption of the following plaintext block.

Later plaintext blocks are decrypted normally. CFB shares two

advantages over CBC mode with the stream cipher modes OFB

and CTR: the block cipher is only ever used in the encrypting

direction, and the message does not need to be padded to a

multiple of the cipher block size (though ciphertext stealing can

also be used to make padding unnecessary).

OUTPUT FEEDBACK MODE (OFB)

 The output feedback (OFB) mode makes a block cipher

into a synchronous stream cipher. It generates keystream blocks,

which are then XORed with the plaintext blocks to get the

ciphertext. Just as with other stream ciphers, flipping a bit in the

ciphertext produces a flipped bit in the plaintext at the same

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 38

location. This property allows many error correcting codes to

function normally even when applied before encryption.

Because of the symmetry of the XOR operation, encryption and

decryption are exactly the same:

Cj = Pj + Oj , Pj = Cj + Oj , Oj = Ek (Ij)

Ij =Oj-1 , I0= IV

Fig 4.4 Output Feedback Mode Encryption

 Each output feedback block cipher operation depends on all

previous ones, and so cannot be performed in parallel. However,

because the plaintext or ciphertext is only used for the final

XOR, the block cipher operations may be performed in advance,

allowing the final step to be performed in parallel once the

plaintext or ciphertext is available. It is possible to obtain an

OFB mode keystream by using CBC mode with a constant string

of zeroes as input. This can be useful, because it allows the

usage of fast hardware implementations of CBC mode for OFB

mode encryption. Using OFB mode with a partial block as

feedback like CFB mode reduces the average cycle length by a

factor of 2^{32} or more.

5. PROPOSED MASKED AES FOR

UNROLLED STRUCTURE

In the Boolean masking implementation, the intermediate value

x is concealed by exclusive- ORing it with the random mask m.

In the round function of the AES, Shift Rows, Mix- Columns,

and AddRoundKey are linear transformations, while Sub Bytes

is the

. Fig. 4 Proposed masked AES with an unrolled architecture in

CBF mode and OBF mode

only nonlinear transformation of the AES. The linear

transformations are defined as Oper; then, the masked Oper can

be written as Oper(x ⊕ m) = Oper(x) ⊕ Oper(m). However, the

masked nonlinear transformation Sub Bytes has the

characteristic as S-box(x ⊕ m) ≠ S-box(x) ⊕ S-box (m). In

order to mask the nonlinear transformation, a new S-box,

denoted as S-box’ is recomputed as S-box’ (x ⊕ m) = S-box(x)

⊕ m’, where m and m’ are the input and output masks of Sub

Bytes. To mask a 128-bit AES, it usually needs 6-byte random

values. These 6 values are defined as m, m’, m1, m2, m3, and

m4. For simplicity, = {m1, m2,m3,m4} is defined as the

mask for one 32-bitMixColumns transformation, and it also

holds that = MixColumns(). The field GF() is an

extension of the field GF(), over which to perform a modular

reduction needs an irreducible polynomial of degree 2, + {1}x

+ {e}, and another irreducible polynomial of degree 4, + x +

1. In order to reduce the hardware resources, the masked AES

engine is calculated mainly over GF(). Fig. 1 shows the

proposed masked AES, which moves the mapping and inverse

mapping outside the AES’s round functions. The plaintext and

the masking values are mapped once from GF() to GF(),

and all the intermediate operations are computed over GF().

Finally, the ciphertext is mapped back from GF() to the

original field GF(). All the masking values need to be

mapped from GF() to GF(), and = map(m), =

map(m’), = map(), and
 = map().

5.1 Optimized Masked S-Box over GF ()

 In order to move the mapping and inverse mapping outside

AES’s round operation, we exchange the computational

sequence of masked affine and inverse mapping functions within

masked S-box. The masked affine function needs to be adjusted

with new scaling factors. In Fig. 1 map operation is the mapping

transformation of 8 × 8 matrix, and map−1 is constructed by the

inverse map operation. The input values of the map function are

(z + m) and m, and the output values of the map function are (z +

m)’ and m’, where {(z + m),m} ϵ GF() and {(z + m)_,m_} ϵ

GF(24). It holds that

(z + m + m)’ = map (z + m + m) (1)

where (z + m)’ = {
 + mh,

 + ml} and m’ = { , }. maffine

and maffine’ are needed for scaling the output values and the

output masking values. The following steps introduce the

procedure to obtain the scaling values.

The normal affine function (Ax + b) can be applied to the left

and the right sides of (1) as

A(z+m+m) + B = A map’ (z+m+m)’ + B (2)

When mapping Equation (2) from GF() to GF(),

map (A(z+m+m) + B) = map (A map’ (z+m+m)’ + B) (3)

map (A(z+m) + B) + map Am = map A map’ (z+m+)’ + map B

+ map A map’ m’ (4)

Therefore we deduce that ,

Maffine = map A map’ (z+m+)’ + map B + map A map’ m’

Therefore, maffine = + mapb and maffine’=

 .

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 39

6. RESULT

 In this section, I have implemented the proposed design and

synthesized the design using Xilinx ISE 13.1 Virtex-6

XC6VLX240T platform. The table shows the comparison

between different AES techniques for storage of data in

network. In order to have fair comparison, I also implement the

masked AES design using Oswalds masked S-Box with non-

pipelined and 6- stages pipelined unrolled structure and basic

iterative unprotective AES method. The.proposed masked AES

is implemented in CBC and PCBC mode, CBF and OFB to

achieve further more security.

7. CONCLUSION

High throughput is an important factor for large data

transformation systems in SANs. In this brief, an LUT-based

masked S-box has been proposed to construct the DPA-resistant

design with acceptable area on FPGA. The proposed masked

AES only needs to map the plaintext and masking values from

GF(2
8
) to GF(2

4
) once at the beginning of the operation and

map the ciphertext back from GF(2
4
) to GF(2

8
) once at the end

of the operation. Therefore, by moving the mapping and inverse

mapping outside the masked AES’s round function, we can

reduce area resources. We also map some parts of the masked S-

box onto BRAM which further reduces area resources. We also

reduce shift rows operation to increase the computational time

without any effect to the security. We achieve 2.953Gbits/s

throughput for the proposed masked AES. Finally, the proposed

masked AES is implemented in CBC mode to achieve more

security.

TABLE 1. RESULTS OF DIFFERENT AES

8. REFERENCES

[1] Advanced Encryption Standard (AES), FIPS-197, Nat. Inst.

of Standards and Technol., 2001.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential power

analysis,” in Proc. CRYPTO, 1999, vol. LNCS 1666, pp. 388–

397.

 [3] S. Messerges, “Securing the AES finalists against power

analysis attacks,” in Proc. FSE LNCS, 2000, vol. 1978, pp. 150–

[4] Yi Wang and Yajun Ha, “FPGA-Based 40.9-Gbits/s Masked

AES with Area Optimization for Storage Area Network,” IEEE

Transaction on Circuits and System-II, 2013.

[5]http://en.wikipedia.org/wiki/Block_cipher_mode_of_operatio

 [6] M. McLoone and J. V. McCanny, “Rijndael FPGA

implementations utilizing look-up tables,” in Proc. IEEE

Workshop Signal Process. Syst., Antwerp, Belgium, 2001, pp.

349–360.

[7] V. Rijmen, “Efficient Implementation of the Rijndael S-

Box,” Dept. ESAT., Katholieke Universiteit Leuven, Leuven,

Belgium, 2006.

[8] Yi Wang and Yajun Ha “ FPGA Based Masked AES with

Area Optimization for Storage Area Network,” 2013.

METHODS

TECHNIQUES

AREA

(SLICES)

Computational

Time

Throughput

(Gbit/sec)

Security

EXISTING

METHODS

Unprotected AES

6985

100ns

1.28

LOW

Masked AES

13677

240ns

0.533

HIGH

Masked AES with Pipelining

10345

130ns

2.953

HIGH

PROPOSED

METHODS

Masked AES in CBC mode

12678

150ns

2.56

VERY HIGH

Masked AES in PCBC mode

12451

150ns

2.56

VERY HIGH

Masked AES in CBF mode

11456

140ns

0.914

VERY HIGH

Masked AES in OFB mode

10967

140ns

0.914

VERY HIGH

Comment [NS2]:

Comment [NS1]:

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 40

AUTHORS PROFILE

Mr. Navin S.M is doing M.Tech in the

Dept. of E&C Engg, BNMIT, Bangalore,

Karnataka, India. This paper is based on the

project work done by him under the guidance of Dr. P. A.

Vijaya.

Dr. P.A Vijaya did her B.E. from

MCE, Hassan and M.E. and Ph.D. from

IISc, Bangalore. She worked in MCE,

Hassan, Karnataka for about 27 years.

Presently, she is a Professor in the Dept.

of E&C Eng., BNMIT, Bangalore,

Karnataka, India. Two students have

obtained Ph.D. degree under her

guidance and four more are doing Ph.D.

Her research interests are in the areas of Pattern Recognition,

Image Processing, Embedded Systems, Real time Systems,

Network Security and Operating Systems.

