
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 9

ABSTRACTION OF UML DIAGRAMS FROM

JAVA CODE

Prof. R.N Kulkarni

HOD,Dept Of CSE

BITM, Bellary

Shilpa Jain M

Dept Of CSE

BITM, Bellary

shiilpabaldota80@gmail.com

Bhavana S H

Dept Of CSE

BITM, Bellary

 bhavanareddy.06@gmail.com

Nethravati K

Dept Of CSE

BITM,Bellary

nethra.kamagandi@gmail.com

Shalini S

Dept Of CSE

BITM

shaliniskhr@gmail.com

Abstract: During the last few decades, we can see

tremendous growth in the software industry. Every

organisation is developing either generic or customized

applications for the customers. At the time of

development, the developers collect the requirements

from the customer and then they realize requirement into

design and then design into code. The requirement and

the design documents are available with the developers

only. If any user wants to know the design information,

then it is not available. There is no tool available where

we can extract the design of an information system by

giving the source code written in java programming

language.In this paper, we are proposing a automated

methodology to abstract the design information from the

input java code, which comprises of three phases:

Restructuring, Moulding and then Designing. The output

design information is represented in the form of

following UML diagrams (class diagrams, object

diagrams, usecase diagrams, sequence diagrams and

activity diagrams)Moulding, Restructuring and

Designing are the three phases required to achieve our

motive.

Keywords: Restructuring, Moulding, Designing,

Reverse Engineering.

1. INTRODUCTION

Designing the structure of source code for example, as an

UML class diagram, object diagram, use case diagram,

sequence diagram and activity diagram. It is quite well

understood Java code acts an input and corresponding

types of UML diagrams emerge as an output. Simple

implementation of Reverse engineering UML model

format, by directly extracting the needed information

from the given problem code. Reverse Engineering

enables representations of the system in another form at a

higher abstraction level.

IBM Rational Rose Enterprise software provides a

modeling support for application development and works

with a number of implementation technologies. But this

tool, all the UML elements should be defined in prior for

building UML diagrams. This drawback made us think

about the limitation of Rational Rose and work on it to

overcome. We try to develop a tool which abstracts UML

diagrams from the problem code. It reduces complexity

when compared to other existing tools. It is simple to

implement as it directly extracts its needed information

from the input java code, hence there is no need of

defining the elements of UML in prior. In the paper [1],

the author specifies Software requirements in natural

language (NL). However, requirements specified in NL

can often be ambiguous, incomplete, and inconsistent.

Moreover, the interpretation and understanding of

anything described in NL has the potential of being

influenced by geographical, psychological and

sociological factors. The proposed tool in [1] is referred

to as Requirement analysis to Provide Instant Diagrams

(RAPID). The RAPID tool assists analysts by providing

an efficient and fast way to abstract only the class

diagram from their requirements. But in our

methodology, we are abstracting class, object, use case,

sequence and activity diagrams from the source code.

In the paper [2], the authors proposed a novel approach

for integrating OOAD and Task Modelling. By

exploiting the common semantic ground between task

models and system behaviour models, they describe

generation of UML diagrams, such as use cases, use

case diagrams and scenario diagrams, from the task

models represented in a semi-formal notation.

In the paper [3], the authors try to use fuzzy pattern

detection techniques for the recovery of UML

collaboration diagrams from source code. The approach

is based on a knowledge base of basic data types and of

generic collection classes and of code clichés for Java

beans and of fuzzy patterns for object structure look-up

and modification clichés.

The authors Grady booch, James Rumbaugh in their

book titled “The Unified Modeling Use Guide” [4]

provides a reference to the use of specific UML features.

The user guide describes a development process for use

wth UML and speaks about the usage of UML

effectively from the scratch. It is primarily directed to

members of the development team who create UML

models.

In the book [5] “UML for Java Programmers”, the

author clearly illustrates the overview of UML for java

programmers. It clearly explains the relationship of UML

elements with the java code. It guides in the drawing of

various UML diagrams.

In our methodology, we try to abstract UML diagrams

from the java source code. Java code acts as an input and

five types of UML diagram format emerge as an output.

It reduces complexity when compared to other

methodologies already available in the market.

2. TERMINOLOGY

2.1 Restructuring: Restructuring is the transformation

from one representation form to another at the same

abstraction level. The transformation preserves the

external behavior of the system. Restructuring is

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 10

typically used in implementation stage to transform code

from an unstructured form to a structured form.

2.2 Moulding: It is a method for decomposing programs

by analyzing their data and control flow. The behavior of

the classes and the control flow is analyzed that helps in

determining relationships between them. It moulds the

program according to the behavior and relationships

between the elements of the program.

2.3 Designing: Designing represents the actual designing

of the UML diagrams which includes class diagrams,

object diagrams, use case diagrams, sequence diagrams

and activity diagrams as an output. The UML diagrams

are abstracted from the source code.

2.4 Reverse Engineering: The reverse engineering is the

process of analyzing the subject system with two goals:

- To identify the system’s components and their

interrelationships

- To create representations of the system in another form

at a higher abstraction level.

3. PROPOSED METHODOLOGY:

In this paper, we are proposing a methodology for the

abstraction of design information in the form of class,

object, use case and sequence diagram from the input

java program. The methodology comprises the following

steps:

3.1 Restructuring: Initially scan the program,

restructure the code by placing the methods in call in

sequences order and arranging the classes in inheritance

sequence.

/* Algorithm for the Restructuring */ Input: Executable

‘java’ program

Output: Restructured java code stored in a file

1. [Restructuring of input ‘java’ program]

1.1 Scan the program, search for the function main.

1.2 Identify the method in the main, arrange the

methods in calling sequence in calling-called

 hierarchy. 1.3 Arrange the

classes in their inheritance sequence.

1.4 Store the obtained output to another file.

3.2 Moulding: Mould the entire code by removing the

comments, blank lines, break the line such that only one

statement is included in each line.

/* Algorithm for the Moulding */

Input: Restructured output file

Output: Moulded java code stored in a file

1. [Moulding of the java code]

1.1 Remove the comment lines, if any.

1.2 Remove the blank lines, if any.

1.3 Break the line, if multiple statements are present in a

single line or if selection statements (if, while, do-while,

for) are encountered. 1.4

Assign line number to each physical statement of the

program. 1.5 Store the obtained

output in a file.

3.3 Designing: This phase includes designing various

UML diagrams- class diagrams, object diagrams, use

case diagrams, sequence diagrams, activity diagrams.

/* Algorithm for Designing */

Input: The moulded output stored in a second file.

Output: Designed UML diagrams for the input source

code which includes class, object, use case, sequence,

activity diagram.

1. [Designing class diagrams]

1.1 Search for the keyword “class” in the code, and place

the class name in the first compartment. Search for the

data types of the variable in the code and place it in

second compartment.

1.2 If a verb is encountered in the class, for example

print(), place it in the third compartment of the respective

class diagram as methods of the class.

1.3 Precede the attributes and functions in the class

diagram with the visibility in the java code (+ public, -

private, # protected, _ static). The return types and

parameters of the method should also be specified in the

class diagram.

1.4 Abstract class names should be in italics. Identify

association, aggregation, generalization and multiplicity.

1.5 Repeat the steps and construct the class diagrams for

every classes encountered in the code.

2. [Designing object diagrams] 2.1 Extract the

object names in main, which can be one of the two

format in the code:

classname objectname;

(or) objectname =

new classname(); 2.2 Object diagram is of two

compartments, object name : class name, attributes :

values respectively. 2.3 For every object

instantiation in the code, object diagram is drawn with its

attributes and values for each object. 2.4 The object

diagrams of a class are connected in the same way as of

class diagram.

3. [Designing Use case Diagrams] 3.1 One object

represents one actor, which

 is represented by a stickman. 3.2 The methods

performed on objects which describe functionality

should be included in an elongated ellipse, each

representing one use case. 3.3 The use

cases can be connected to objects (actors) as per the

methods invocation. 3.4

The set of use cases formed can be presented in a

rectangular set, with the use case name specified at the

left end corner.

4. [Designing Sequence Diagrams] 4.1

The problem statements in the body of the function can

be treated as a message which represents object

communication. 4.2 The actors (objects) in the use case

are written in a rectangular box preceded with colon(:).

4.3 The vertical line named lifeline is drawn from top to

bottom representing the time span between the function

call from constructor to destructor function of the object.

4.4 The period of time for an object execution is

represented as a thin rectangle called activation or focus

of control. 4.5 Methods called perform operation on

objects. 4.6 Messages

can be simple, asynchronous and synchronous. Solid

arrow head represents synchronous calls , open arrow

head represents asynchronous calls and a dashed line

represents reply message. 4.7 When a destructor

function is invoked for the object, the object is destroyed

represented by 'X' mark on the lifeline.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 11

5. [Designing Activity Diagram] 5.1

As the objects are manipulated, activity diagram is drawn

according to the flow of control.

5.2 The start of flow of control is represented via a solid

circle. 5.3 The elongated ovals shows

activities and arrow shows sequencing. 5.4 If

conditions are encountered in the code then it can be

represented in a diamond with the successor activities

represented by two arrows respectively for true or false.

5.5 Several activities which are performed concurrently

are included via synchronization bar-a heavy line with

one or more input arrows. 5.6 The end

of the activity is represented with a bull’s eye.

4. CASE STUDY

The proposed procedure is implemented for number of

‘java’ programs and the results we got are correct and

complete. The sample ‘java’ program depicted in figure

2 is the output of the methodology implemented in our

paper.

[A sample 'java' program]

class Rectangle

{

int length, width;

void getdata(int x, int y)

{

 length=x;

width=y;

 }

 int rectArea()

{

int area=length*width;

return(area);

 }

}

 class rectArea

{

 public static void main(String args[])

 {

 int area;

Rectangle rect=new Rectangle();

rect.getdata(x, y);

area=rect.rectArea();

 System.out.println(“Area=”+area);

 }

 }

Output:

Figure1:class diagram.

Figure2:usecase diagram.

Figure3: Sequence diagram.

RectArea

+area1: int

main()

Rectangle

+length: int

+width: int

getdata(int x,int y): void

rectArea(): int

getdata

rectArea

Actor

Actor

rectangle

rect1:rectangle:system

return(area)

enter length and width

Actor

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X;pISSN:2321-2241 Volume: 2; Issue: 4; April-2014

 www.ijcrd.com Page 12

 5. CONCLUSION

This paper presents an automatic tool that abstracts the

required elements from the program and builds the UML

diagram format. This procedure is very simple as the

extraction is directly from the code itself. This tool

describe the techniques to inspect java source code using

annotations and knowledge base about the semantics of

pre-defined container classes and their access operations.

It concludes Reverse engineering support that analyzes

java source code and tries to create the corresponding

UML model format. Five basic structural and behavioral

diagrams are retrieved. The constituents needed for the

generation of UML model format are extracted directly

from the code itself, overcoming the limitations of the

few already implemented tools in the market, for

instance, Rational Rose. Our proposed tool is very

beneficial in Modeling and Designing the problem. Its

simplicity and ease in implementation makes the tool

quite interesting and more advantageous when compared

to other existing tools in the market.

6. REFERENCES

[1] Generating UML Diagrams from Natural Language

Specifications by Priyanka More and Rashmi at

International Journal of Applied Information Systems

(IJAIS) – ISSN : 2249-0868 Foundation of Computer

Science FCS, New York, USA Volume 1– No.8, April

2012.

[2] Generating UML Diagrams from Task Models by

Shijian Lu, Cécile Paris, Keith Vander Linden and

Nathalie Colineau. Department of Computer Science,

Calvin College, Grand Rapids, MI 49546, USA.

kvlinden@calvin.ed

[3] Recovering UML Diagrams from Java Code using

Patterns by Jörg Niere, Jörg P. Wadsack Albert

Zündorf.Department of Mathematics and Computer

Science University of Paderborn Warburgerstraße 100

33098 Paderborn, Germany zuendorf@uni-paderborn.de

[4] “The Unified Modeling Use Guide” book by Grady

booch, James Rumbaugh, 3rd ed published by Pearson

Education in South Asia.

[5] UML for Java Programmers, book by Robert Cecil

Martin, Object Mentor Inc.Prentice Hall, Englewood

Cliffs, New Jersey 07632.

[6] An Ameliorated Methodology for the design of Object

Structures from legacy ‘C’ Program, Dr. Shivanand M.

Handigund and Rajkumar N. Kulkarni, BITM,Bellary.

[7] Michael R Blaha and Jamesh R Rumbaugh, Object

Oriented and Design with UML, second ed. Addison-

Wesley, 2005.

[8] A Systematic Study of UML Class Diagram

Constituents for their Abstract and Precise Recovery by

Yann-Gael Gu'eh'eneuc.

[9] http://www.uml-diagrams.org/. An official website of

UML diagrams.

[10] Formalizing class diagram in UML published in

Software Engineering and Service Science (ICSESS),

2011 IEEE 2nd International Conference on 15-17 July

2011

mailto:kvlinden@calvin.ed
mailto:zuendorf@uni-paderborn.de
http://www.uml-diagrams.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5967841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5967841

