
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 17

FPGA Implementation of Binary-tree-based High

Speed Packet Classification

System
Bhakti Sidrai Tumari

1
, Lakshmipriya W

2

1
 Student, Dept.of ECE(VLSI & ES), Banglore, bhaktitumari@gmail.com

2
 Assistant Professor, Dept.of ECE, Banglore, lakshmipriya@tjohngroup.com

Abstract: Packet classification involving multiple fields is

used in the area of network intrusion detection, as well as to

provide quality of service and value-added network services.

With the ever increasing growth of the Internet and packet

transfer rates, the number of rules needed to be handled

simultaneously in support of these services has also increased.

Field-Programmable Gate Arrays (FPGAs) provide good

platforms for hardware-software co-designs that can yield

high processing efficiency for highly complex applications. In

the network intrusion detection system (NIDS), there is a

limitation on the speed of software-based packet classification

because of the processor performance, the serial program

execution and so on. It has become a great challenge to

develop scalable solutions for next-generation packet

classification that support higher throughput, larger rule sets

and more packet header fields. For low-cost high performance

embedded networking applications, the best solution could be

doing packet classification by special designed hardware,

which can effectively release the burden of system CPU. The

binary tree structure is generated through pre-processing on

computer, which does not influence the searching speed of

FPGA. During the packet header division, the division field is

dynamic and selected according to the rules.

KEYWORDS – PACKET CLASSIFICATION, FPGA, BINARY

TREE, NIDS

I.NTRODUCTION

It is invariably the ultimate goal to improve the

efficiency and security of network operation in today’s

Internet world. Access control, traffic engineering, intrusion

detection, and many other network services require the

discrimination of packets based on the multiple fields of

packet headers, which is called packet classification.

One of the fundamental challenges in designing high

speed router is packet classification [1]. The router has to

support firewall processing, quality of service differentiation,

policy routing, and other value added services which is

enabled by packet classification. When a packet arrives at a

router, its header is compared with a set of rules. Each rule

can have one or more fields and their associated value, and an

action to be taken if matched. A packet is considered

matching a rule only if it matches all the fields within that rule.

Until recently, Internet routers provided only “best-effort”

service, servicing packets in a first-come-first-served manner.

Routers are now called upon to provide different qualities of

service to different applications which means routers need

new mechanisms such as admission control, resource

reservation, per-flow queuing, and fair scheduling. All of

these mechanisms require the router to distinguish packets

belonging to different flows. Flows are specified by rules

applied to incoming packets. Collection of rules is called as a

classifier. Each rule specifies a flow that a packet may belong

to based on some criteria applied to the packet header.

The identifying of packets for quality of service (QoS)

packets can be classified by source and destination ports and

address and protocol type. The process of categorizing packets

into “flows” in an Internet router is called packet classification.

All packets belonging to the same flow obey a pre-defined rule

and are processed in a similar manner by the router. For

example, all packets with the same source and destination IP

addresses may be defined to form a flow. Packet classification

is needed for non “best effort” services, such as firewalls and

quality of service; services that require the capability to

distinguish and isolate traffic in different flows for suitable

processing. In general, packet classification on multiple fields

is a difficult problem.

On multi-dimension packet classification there has

been a lot of research going on over the past decades. Most

existing solutions cannot meet the performance requirement.

On the one hand, software solutions based on multi-core

network processors for high performance packet classification

have good flexibility and programmability, but they inherently

lack high parallelism and abundant on-chip memory [2][3].

On the other hand, hardware solutions are mainly

based on TCAM (Ternary Contend Addressable Memory) and

Bloom Filter. TCAM-based solutions can reach high speed

performance while they sacrifice scalability, programmability

and power efficiency. TCAM-based solutions also suffer from

a range-to-prefix conversion problem, making it difficult to

support large and complex rule sets. Although Bloom-Filter-

based algorithm can process prefix-type rules well, it is not

good at range-type rules. What's more, it induces complex

conflict [4] [5] [6].

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 18

II.THEORY OF BTPCF

An IP packet is usually classified based on the five fields

in the packet header: the 32-bit source/destination IP

addresses (denoted SA/DA), 16-bit source/destination port

numbers (denoted SP/DP), and 8-bit transport layer protocol.

In our system, the 32-bit source/destination IP addresses is

used to classify the packet.

The binary decision-tree data structure is built by carefully

preprocessing. Every father node has two child nodes, and

every node has two packet header fields: the source and

destination IP addresses (the address is usually not an exact

number, but an address range). The steps for preprocessing are

as follows:

1) At first, generate the father node, which contains the full

header fields' ranges: source and destination IP addresses'

ranges are both 0.0.0.0'""255.255.255.255;

2) Generate two child nodes connected to the father node

which also have two packet header fields; ,

3) Choose one of father node's packet header fields' ranges to

divide equally into two small rule ranges

(0.0.0.0'""127.255.255.255,128.0.0.0'""255.255.255.) which

are connected to the two child nodes respectively; another

packet header fields' range does not change. Choosing which

header field to divide depends on which one has less Snort

rules;

4) At last, determining the threshold (marked as Leaf_max) by

simulation on PC according to the particular rule sets. If the

child node contains more rule numbers than the threshold,

divide the child node again until the rule number the new

child nodes contain is not bigger than the threshold. If all rule

numbers that the child nodes contain are not bigger than the

threshold, the division is stopped, which means the binary

decision-tree data structure has been built successfully.

When a packet arrives, the BTPCF algorithm

traverses the decision tree to find the leaf node, which stores

the rule that contains the header ranges of the input packet. If

the leaf node can be found, it means this packet header is

contained in Snort; otherwise, it means not. The input packet

only needs to travel along one branch to find the leaf node,

and then compare with rules the leaf node contains to find the

rule that contains the header ranges. Preprocessing software

AddrSearch, which uses binary tree algorithm to generate

balance binary decision-tree, preprocess the Snort rule sets

and sends them to the FPGA through Ethernet.

Table 1 is mapped to a 2- dimension space (in figure

1). At first, set the threshold to be 2 Gust for example).Then

generate the root node which contains the full header fields'

ranges: source and destination IP addresses' range are both

0.0.0.0--255.255.255.255. From the figure 1 we can see that

the left field still contains 5 rules (RO,R1,R2,R3 and R4), so it

needs to be divided further. The right field contains 3 rules

(RO,R4,R5), so it needs to be divided, too. Field 1 and field 2

are kept dividing until the rule numbers the leaf nodes contain

are not bigger than 2. After dividing 3 times, a 3-level-depth

tree structure is generated (in figure 1),which contains 5

middle nodes and 6 leaf nodes. The rule numbers each leaf

node contains are not bigger than 2, which means the binary-

decision-tree data structure has been built completely. Each

father node contains the information of division field, division

portion and child nodes' addresses.

We use IP packet (source address: 96.78.0.51,

destination address: 45.34.23.50) as an example to show the

search procedure. This IP packet goes along dashed line in

figure 2 to traverse the branch until reaching the leaf node

2_2. Compared with the rules R2 and R4 contained by the leaf

node 2_2, it matches R4.

As every IP packet matches the root node, every IP

packet search from the root node. If it reaches the leaf node,

the search is stopped. Otherwise, judging which child node the

IP packet belongs to, continuing new search from his child

node.

Division boundary can be within a rule's field range,

which leads to that two or more leaf nodes contain this rule; it

takes more memory space to store, as well as increases the

tree's depth. The threshold (Leaf_max) is very important to

the BTPCF, which determines the tree's depth, memory space

and liner searching speed.

Table 1 An example rule set used in binary tree algorithm

Rule Fieldl(source IP address) Field 2(destination IP address)

R0 90.75.0.0 ""156.75.255.255 202.38.0.0 "" 202.38.255.255

Rl 45.78.64.0 "" 45.78.64.255 202.38.0.0 "" 202.38.0.255

R2 96.78.0.0 "" 96.78.255.255 96.45.72.0 "" 96.45.72.255

R3 62.38.64.128""62.38.64.255 96.45.72.0 "" 150.45.72.255

R4 96.78.0.50 "" 215.34.23.10 45.34.23.44 "" 80.34.0.0

R5 180.25.33.0"" 200.120.33.0 192.168.10.0 "" 200.30.34.5

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 19

Fig. 2 Structure of binary tree and linear searching for rules

III.HARDWARE DESIGN OF BTPCF

A Hardware design principle ofBTPCF

Binary tree structure is saved in "tree node memory". Each

node (include the middle nodes and leaf nodes) uses 32 bit

memory space; all child nodes of the same father nodeare

stored in a continuous memory space and the child nodes from

the same level are stored in a continuous memory space in the

order from left to right. Every node's 32 bit data provides the

information that can traverse all his child nodes. The field

ranges of rules contained by the leaf nodes are stored in the

"upper boundary value memory" and "lower boundary value

memory" (the "upper boundary value memory" stores the

upper boundary value of the field range and the "lower

boundary value memory" stores the lower boundary value).

The address of upper boundary value stored in "upper

boundary value memory" is corresponding to the same rule's

lower boundary value's address in "lower boundary value

memory". The leaf node's 32 bit data contains the rule's base

address in "upper boundary value memory" and "lower

boundary value memory". The binary tree node's storage

structure is shown in figure 2.

Figure 3 describes nodes' data structure. In binary tree,

every node's 32 bit data is set as follows: if the node is a

middle node, setting the flag bit (F, bit 0) to 0, otherwise, 1;

division field (bit 3-1) stands for this node's division field

number (field 1 or field 2); division position (pos, bit 8-4) is

used to index the child node which contains the input IP

packet, then uses this index to traverse the binary tree's

branch; child node's base address (bit 31-17) stands for base

address of this node's child node in the memory space. For

example, node 0_1 is a middle node, whose flag bit is 0,

division field is 1, division position is 31

and child node's base address is Ox0003. If the node is

leafnode, then flag bit is 1. Rule number (NoR, bit 3-1) stands

for how many rules this leaf node contains. Rule's base

address (Addr, bit 23-4) stands for this leaf node's base

address in "upper boundary value memory" and "lower

boundary value memory". For example, node 2_1 is leaf node,

whose flag is 1, rule number NoR=1 and Rule's base address

Addr= OxOOOOO.

The description above describes the binary tree

algorithm's preprocessing and packet classification engine's

hardware design principle under the premise that rule and

packet only have two 32 bit fields. However, it is also suitable

for multiple fields.

B Binary tree searching process

During the tree searching process, the system should

often access the "tree searching memory" , which stores the

structure of binary tree. The on-chip-RAM is used as "tree

searching memory" to supply higher access speed. The tree

searching controller controls the "tree searching memory" to

execute the searching process, starting from the root node,

traversing the tree as shown in figure 2 until finding the leaf

node. The searching process is shown in figure 4:

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 20

Fig. 3 storage space of Binary tree nodes and structure of linear searching

Fig. 4 state diagram of searching controller for binary tree

1) Extract the IP packet's field according to the division field's

data;

2) Transmit the extracted data to the buffer (B31-BO);

3) Use the division position (pos) to calculate the next

 offset address;

4) Add the offset address and child node's base address

together to get the next child node's address in the tree

searching memory;

5) Read next child node's 32 bit data from the tree

searching memory;

6) Judge whether this node is middle node (F=O). If F=O,

it means this node is middle node, continue the search;

 otherwise, it means not, stop the search.

From figure 4, we can see that each tree search is in 6 steps.

The steps (5) and (6), accessing the on-chip-RAM, consume 1

clock cycle. The steps (1) to (4), which are realized by

combinational logic, consume 1 clock cycle. After the tree

search processing, tree searching controller sends the tree

search results, the data of the found leaf node, to the linear

search engine's buffer

Fig. 5 state diagram of linear search engine

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 21

Figure 5 shows the linear search engine's processing steps. At

first, the tree search results are read from the linear search

engine's buffer, and the linear tree search is started as follows:

1) Generate rule's base address according to the address

ofupper and lower boundary value memory;

2) Read data from the upper boundary value memory and

lower boundary value memory;

3) Compare the data of IP packet's field with the data of

rule's field;

4) If they match, stop the linear tree search; otherwise,

go to step (5).

5) & (6) use the result of step (4) and other information,

 such as Rule number (NoR), to calculate the addresses

 of next accessing rule's upper and lower boundary

 value memory.

 In the linear search described above, step (1) and (2)

consume 2 clock cycles to access the memory; (3) to (6)

consume 1 clock cycle; so the total consumed time is 3 clock

cycles. During the linear search, 4 comparators are used to

realize parallel processing. If all rules of the found out leaf

node (the number is NOR) have been compared, the linear

tree search is stopped.

IV.EXPERIMENTALRESULTS

RTL VIEW

After the HDL synthesis phase of the synthesis

process, a schematic representation of synthesized source file

can be displayed. This schematic shows a representation of the

pre-optimized design in terms of generic symbols, such as

adders, multipliers, counters, AND gates, and OR gates.

Viewing this schematic may help you discover design issues

early in the design process.

Fig.6 Detailed RTL output of the Packet Classification System

Simulation result

Figure 7 shows simulated result of Packet Classification

when start of packet becomes high the input packets will be

transmitted to the specified destination address generated. The

memory location will keep on increasing as many packets are

arriving.

Fig.7 Modelsim Simulated Output of Packet Classification System

Output Using Chip Scope Pro Analyzer

Fig.8 Hardware Controlled Output Using Chip Scope Pro Analyzer

As shown in figure 8 when the reset is made it as

high chip scope analyzer gives the output as zero when reset is

made low analyzer will display the 128 bits output. The output

is controlled by the hardware.

V.CONCLUSION

Binary Tree based packet classification system is a

memory efficient and searching quick data structure for packet

classification based on FPGA is done. Using the binary tree

structure enhances the speed of preprocessing and packet

classification based on FPGA.

The rule's preprocessing time only includes the time

from the generating of random rule sets to the completion of

building binary tree structure, does not include the time of

traversing binary tree, reading the node's data and linear

search. In binary tree algorithm, the preprocessing time is

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 22

about 0.000563s (rule number is 5000) and about 0.050331s

(rule number is 10,000). In HiCuts algorithm, the

preprocessing time is about 8 s (rule number is 5000), about

33 s (rule number is 10,000) and about 140 s (rule number is

20,000). Therefore, the binary tree's preprocessing time is

much smaller than HiCuts algorithm's.

The packet classification consists of three parts:

packet extraction (extract the fields' value from the input IP

packet), binary tree search and linear search. As these three

parts processed parallel, and the later uses the front parts'

results, we should make these three parts' processing time

equivalent to enhance the system's processing ability. The

packet extraction's processing time is fixed; binary tree

search's processing time depends on binary tree's depth

(Tree_depth) and linear search's processing time depends on

the number of leaf nodes' rules(NoR). In addition, NoR is

relevant to the threshold (Leaf_max).

Taking advantage of pipeline and parallel processing

improves the system's processing ability greatly. Results show

that binary tree algorithm consumes less memory space than

HiCuts algorithm (when the rule number is 10,000, it only

consumes 200 KB memory space); when the rule number is

10,000, preprocessing time for building tree structure is less

than 0.051s, which means it takes less time than HiCuts

algorithm(33 s).

This system can be used in a variety of network

security systems with some other modification.

REFERENCES

[1] Yeim-Kuan Chang, Han-Chen Chen, Layered Cutting Scheme for

Packet Classification, Advanced Information Networking and

Applications. 2011 IEEE International Conference, pp. 675 - 681.

[2] Yuhua Chen, Oladapo oguntoyinb0 , Power efficient packet

classification using cascaded bloom filter and off-the-shelf ternary

CAM for WDM networks. Computer Communications, Volume 32,

Issue 2, pp. 349-356, February 2009.

[3] Erdem, 0.; Hoang Le; Prasanna, V:K.Clustered Hierarchical

Search Structure for Large-Scale Packet Classification on FPGA.

Source: 2011 International Conference on Field Programmable Logic

and Applications, pp. 201-206, 2011.

[4] Qi, Yaxuan; Fong, Jeffrey; Jiang, Weirong; Xu, Bo; Li, Jun;

Prasanna, Viktor. Multi-dimensional packet classification on FPGA:

100 Gbps and beyond. Source: Proceedings – 2010 International

Conference on Field-Programmable Technology, FPT'10, pp 241-248,

2010.

[5] Derek Pao, Yiu Keung Li, Peng Zhou, Efficient packet

classification using TCAMs. Computer Networks, Volume 50, Issue

18, pp. 3523-3535, December 2006.

[6] A.G Alagu Priya, Hyesook Lim, Hierarchical packet

classification using a Bloom filter and rule-priority tries. Computer

Communications, Volume33, Issue 10, pp. 1215-1226, June 2010.

[7] Gupta, Pankaj, McKeown, Nick. Classifying packets with

hierarchical intelligent cuttings, IEEE Micro, Volume 20, Issue 1, pp.

34-41,2000.

[8] Jiang W., Prasanna v. K.,Scalable Packet Classification on

FPGA,Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, Volume:20, Issue: 9 ,pp. 1668-80,2012.

[9] Wang Yong-gang, Zhang Tao, Zheng Yu-feng, Yang Yang,

Realization of FPGA-based packet classification in embedded system,

Instrumentation and Measurement Technology Conference, 2009.

I2MTC '09. IEEE, pp. 938 - 942, 2009.

[10] Gupta P., McKeown N., Classifying packets with hierarchical

intelligent cuttings, IEEE Micro, Volume:20, pp. 34- 41, 2000

Author Biographies

Bhakti Sidrai Tumari received diploma

and engineering degree in electronics and communication

engineering from Board of Technical Education Banglore and

Visvesvaraya Technological University,Belgaum Karnataka

India , in 2009 and 2012. She is currently working for MTech

degree in VLSI and Embedded Systems at T John Institute of

Technology Banglore.

Lakshmipriya Wudali as assistant

professor T John Institute of Technology Banglore

