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Abstract: Management of security risks 

is becoming increasingly important 

because of the security compromises. A 

manager of a project deals with a large 

number of modules but he has very less 

resources identify security risks. Before 

focusing on the correctness of the module 

there is a need for an algorithm that 

classifies all the modules based on risks 

involved. This paper suggests a genetic 

algorithm to classify software based on the 

risks involved after development of the 

modules to ensure software security. 
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1.INTRODUCTION 
 

The increasing importance of security in 

various applications has drawn a lot of 

attention and research. These security 

attacks are often found in web applications 

particularly. Enormous web applications 

are being hosted to enrich the human life 

from banking to e shopping and national 

security. Security risks are different from 

other risks and is impacted by various 

attack methods including probes leading to 

break in which may even be coupled with  

 

 

distributed denial of service attacks. One 

of the biggest challenges facing the  

 

 

 

software project managers pertaining to 

security is the dearth of many resources. 

Ideally it would be nice if all the software 

modules are paid the same attention with 

regard to security. But the paucity of many 

resources and particularly the short 

durations available for application 

delivery, it would be advantageous if the 

manager has an insight into how 

vulnerable a module is. In this situation, he 

can focus the attention on modules with 

notably high levels of vulnerability (low 

security). Genetic algorithms belong to the 

class of evolutionary computation and are 

highly suited for searching and 

optimization problems. These genetic 

algorithms seek to find solutions to 

complex problems by emulating the 

natural process of evolution. 

 

1.1 Previous research: 
               

The motivation behind this research work 

was the research of Liu and khoshgoftaar 

who have successfully applied genetic 

programming to build a software quality 

classification model. In their work, they 

compare the results obtained by using GP 

and another technique called logistic 

regression modelling (LRM) and find that 

GP provides more promising results. 

According to them, their work is the first 

to apply GP for security risk classification. 

Because security has several interesting 

parallels with quality and vulnerabilities 
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share a lot with “faults”, we explored if the 

GP model can also be used for building a 

software security classification model. 

 

1.2 Structure of the paper 

 
The rest of the paper is organized as 

follows. Section 2 presents a general 

overview of the software security 

classification model. Section 3 presents the 

research methodology used, section 4 

gives the results and section 5 concludes 

the research and suggests potential 

avenues for future research. 

 

2.SOFTWARE 

SECURITY 

CLASSIFICATION 

MODEL 

 
While the predication of software security 

is very useful, prediction of the exact 

number of security vulnerabilities in each 

and every time-consuming and in most 

cases unnecessary. A software 

classification model is to predict the 

number of vulnerabilities of a module 

based on metrics. But prediction of exact 

number of vulnerabilities is very time-

consuming and in most cases unnecessary. 

A software security classification model 

focuses on classifying a module as 

vulnerable or non-vulnerable. The 

practical budget constraints of a software 

development project may not allow for 

applying the same level of effort and 

security improvements techniques like 

security reviews and penetration testing, to 

every module. In such cases the project 

manager would prefer allocating more 

resources for modules which are 

vulnerable. A software security 

classification model would allow the 

manager to focus attention and allocate 

more resources for vulnerable modules. A 

module is said to be vulnerable if the 

number of vulnerabilities exceeds a certain 

threshold. Otherwise it is said to be not 

vulnerable. We define a “class 1” 

misclassification to occur if a secure 

module is classified as “insecure” and a 

“class 2” misclassification to occur if an 

“insecure” module is classified “secure”. 

The motivation for such a categorization is 

from where the authors use the 

terminologies – type 1 misclassification 

and type 2 misclassification. 

 

A security classification rule based on is 

given as: 

 

Class(Xi)=  secure  F1(Xi)         >  C 

                                    F2(Xi) 

                       Insecure otherwise 

Where f1(Xi) is the likelihood function of 

a module’s membership in the “secure” 

class and f2(Xi) is the likelihood function 

of a module’s membeship in the 

“insecure” class, c is the constant chosen 

emperically. As the value of c increases, 

class 1 misclassification increases and 

class 2 misclassification rate decreases. 

3.RESEARCH 

METHODOLOGY 

     The subject of the research was a huge 

java application containing around 132 

java source files. For simplicity each java 

file was considered as a module. The 

metrics taken for consideration as taken 

from include 
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METRIC  

         

DESCRIPTION 

Access 

specifier 

metric 

(ARM) 

Whether method 

is public or not 

Validated 

parameter 

metric 

(VPM) 

Proportion of 

parameters 

validated 

Sensitive 

data 

accesses 

(SDA) 

Proportion of the 

number of 

“sensitive” data 

accessed by the 

method. 

Cyclomatic 

complexity 

(CYCM) 

Cyclomatic 

complexity of 

the method. 

Extensibility 

metric (EM) 

Whether the 

method is final 

or not. 

 

The first step was to collect the data from a 

past project. The data in this case were the 

values of the metrics considered for the 

study. The threshold for the number of 

vulnerailities was fixed at 5. Following 

this the class in the past project is 

determined as 

Class(x)= secure if vulnerabilities < 5 

               0 otherwise 

Class(x)={secure if vulnerabilties <5,      

insecure otherwise} 

The data set is divided into the “fit”  

dataset that will be used to train the 

classifier and “test” data set that will be 

used to test the effectiveness of the 

classifier. Out of the 132 modules selected 

for the study, 72 where put in the “fit” 

dataset and 60 in the “test” dataset. Out of 

72 modules in the “fit” data set 47where in 

the “secure” class and 25 were in the 

insecure class. Out of 60 modules in the 

“test” dataset, 48 where in the “secure” 

class and 12 were in the “insecure” class. 

This is followed by building a GP model 

as described below. 

4.BUILDING THE GP 

MODEL 

The first challenge to be addressed when 

applying GA is solution encoding by 

chromosomes. In this work, each 

chromosome consist of the values of the 

metrics(each metric has value in the range 

0 to 1) considered for the study. 

The second challenge is the selection of a 

fitness function. The fitness function 

chosen is based on the one used in [1]-

N1+c*N11+2*N111 where N1 is the 

number of class 1 misclassifications, N11 

is the number of class 2 misclassification 

and N111 is the number of modules with 

very high predicted values for number for 

vulnerabilities. The cross-over probablity 

was set at 0.8 . The number of generations 

was capped at 150 and the population size 

was at 100. 

The best model is the one that yields the 

lowest number of overall 

misclassifications while at the same time 

most balanced number of class1 and class2 

misclassifications. The stochastic process 

of training creates a lot of difficulties in 

selecting the best model produced by GA 

because of issues like over-fitting. Over-

fitting occurs when the model performs 

very well with the fit dataset but not so 

well with the test dataset. To avoid this 

problem,we followed the random subset 

selection(RSS) approach outlined in where 
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a different random subset of the fit dataset 

is taken for each generation. 

5.SELECTING THE 

BEST MODEL 

We run the experiment with values of c 

from 1 till 2 in steps of 0.2 yielding 6 runs. 

For each c value the  top 2 individuals are 

selected yielding 12 individuals. The 

fitness of the 12 individuals is recalculated 

based on the entire fit dataset as we have 

resorted to RSS and only a random susbset 

is taken for each run. Based on the 

calculated fitness values, the best model is 

selected for each c value based on the 

criterion of yielding the lowest total 

misclassification and most balanced 

number of class 1 and class 2 

misclassification. From the 6 best models 

selected each c value, the best model is 

chosen again using the same criteria. 

6.RESULTS AND DISCUSSION 

The results for the fit and test data sets for 

various values of c are tabulated below. 

 

RESULTS FOR THE FIT DATA SET 

 

C CLASS1 CLASS2 overall 

1 7 

14.89% 

5 

20% 

12 

16.67% 

1.2 11 

23.40% 

3 

12% 

14 

19.44% 

1.4 13 

27.66% 

4 

16% 

17 

23.61% 

1.6 11 

23.40% 

6 

24% 

17 

23.61% 

1.8 12 

25.53% 

9 

36% 

21 

29.17% 

2.0 13 

27.66% 

8 

32% 

21 

29.17% 

        

 

RESULTS FOR THE TEST DATA SET 

 

 

C CLASS1 CLASS2 overall 

1 3 

6.38% 

1 

4% 

4 

5.55% 

1.2 3 

6.38% 

3 

12% 

6 

8.33% 

1.4 3 

6.38% 

2 

8% 

5 

6.94% 

1.6 7 

14.89% 

2 

8% 

9 

12.5% 

1.8 5 

10.64% 

2 

8% 

2 

9.72% 

2.0 4 

8.51% 

3 

12% 

7 

9.72% 

 

 

As can be observed the “best” model as 

per our definition was obtained at c=1.6 

for the “fit” data set which yields a overall 

misclassification rate of 23.61% note that 

lowest misclassification rate was 16.67% 

obtained for c=1. But this does not possess 

the “balanced” property and hence not 

considered as the best. For the “test” data 

set the best results were obtained for c=1 

that yielded an overall misclassification 

rate of 5.55% . The performance of GA 

has been significantly better for the “test” 

set. 

 

7.CONCLUSION AND 

FUTURE WORK 

 
As a result a genetic algorithm is 

developed to classify software’s quality 

into secure and non-secure groups based 

on metrics. The results are quite promising 

and are expected to be of great utility by 

software practitioners. This work can be 

even more developed by adding extra 

functions like recall and precision etc. 
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