
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 23

DETERMINATION OF SOFTWARE QUALITY BASED

ON THE RISKS INVOLVED USING A GENETIC

ALGORITHM

 J.Sreenivasan T.Srebalaji I.SivaSankar
Valliammai Engineering College Valliammai engineering college Valliammai Engineering College
jcsreenivasan@gmail.com srebalaji@outlook.com siva.shan193@gmail.com

Abstract: Management of security risks

is becoming increasingly important

because of the security compromises. A

manager of a project deals with a large

number of modules but he has very less

resources identify security risks. Before

focusing on the correctness of the module

there is a need for an algorithm that

classifies all the modules based on risks

involved. This paper suggests a genetic

algorithm to classify software based on the

risks involved after development of the

modules to ensure software security.

Keywords: Algorithm, classification,

security risk, modules.

1.INTRODUCTION

The increasing importance of security in

various applications has drawn a lot of

attention and research. These security

attacks are often found in web applications

particularly. Enormous web applications

are being hosted to enrich the human life

from banking to e shopping and national

security. Security risks are different from

other risks and is impacted by various

attack methods including probes leading to

break in which may even be coupled with

distributed denial of service attacks. One

of the biggest challenges facing the

software project managers pertaining to

security is the dearth of many resources.

Ideally it would be nice if all the software

modules are paid the same attention with

regard to security. But the paucity of many

resources and particularly the short

durations available for application

delivery, it would be advantageous if the

manager has an insight into how

vulnerable a module is. In this situation, he

can focus the attention on modules with

notably high levels of vulnerability (low

security). Genetic algorithms belong to the

class of evolutionary computation and are

highly suited for searching and

optimization problems. These genetic

algorithms seek to find solutions to

complex problems by emulating the

natural process of evolution.

1.1 Previous research:

The motivation behind this research work

was the research of Liu and khoshgoftaar

who have successfully applied genetic

programming to build a software quality

classification model. In their work, they

compare the results obtained by using GP

and another technique called logistic

regression modelling (LRM) and find that

GP provides more promising results.

According to them, their work is the first

to apply GP for security risk classification.

Because security has several interesting

parallels with quality and vulnerabilities

mailto:jcsreenivasan@gmail.com
mailto:srebalaji@outlook.com
mailto:siva.shan193@gmail.com

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 24

share a lot with “faults”, we explored if the

GP model can also be used for building a

software security classification model.

1.2 Structure of the paper

The rest of the paper is organized as

follows. Section 2 presents a general

overview of the software security

classification model. Section 3 presents the

research methodology used, section 4

gives the results and section 5 concludes

the research and suggests potential

avenues for future research.

2.SOFTWARE

SECURITY

CLASSIFICATION

MODEL

While the predication of software security

is very useful, prediction of the exact

number of security vulnerabilities in each

and every time-consuming and in most

cases unnecessary. A software

classification model is to predict the

number of vulnerabilities of a module

based on metrics. But prediction of exact

number of vulnerabilities is very time-

consuming and in most cases unnecessary.

A software security classification model

focuses on classifying a module as

vulnerable or non-vulnerable. The

practical budget constraints of a software

development project may not allow for

applying the same level of effort and

security improvements techniques like

security reviews and penetration testing, to

every module. In such cases the project

manager would prefer allocating more

resources for modules which are

vulnerable. A software security

classification model would allow the

manager to focus attention and allocate

more resources for vulnerable modules. A

module is said to be vulnerable if the

number of vulnerabilities exceeds a certain

threshold. Otherwise it is said to be not

vulnerable. We define a “class 1”

misclassification to occur if a secure

module is classified as “insecure” and a

“class 2” misclassification to occur if an

“insecure” module is classified “secure”.

The motivation for such a categorization is

from where the authors use the

terminologies – type 1 misclassification

and type 2 misclassification.

A security classification rule based on is

given as:

Class(Xi)= secure F1(Xi) > C

 F2(Xi)

 Insecure otherwise

Where f1(Xi) is the likelihood function of

a module’s membership in the “secure”

class and f2(Xi) is the likelihood function

of a module’s membeship in the

“insecure” class, c is the constant chosen

emperically. As the value of c increases,

class 1 misclassification increases and

class 2 misclassification rate decreases.

3.RESEARCH

METHODOLOGY

 The subject of the research was a huge

java application containing around 132

java source files. For simplicity each java

file was considered as a module. The

metrics taken for consideration as taken

from include

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 25

METRIC

DESCRIPTION

Access

specifier

metric

(ARM)

Whether method

is public or not

Validated

parameter

metric

(VPM)

Proportion of

parameters

validated

Sensitive

data

accesses

(SDA)

Proportion of the

number of

“sensitive” data

accessed by the

method.

Cyclomatic

complexity

(CYCM)

Cyclomatic

complexity of

the method.

Extensibility

metric (EM)

Whether the

method is final

or not.

The first step was to collect the data from a

past project. The data in this case were the

values of the metrics considered for the

study. The threshold for the number of

vulnerailities was fixed at 5. Following

this the class in the past project is

determined as

Class(x)= secure if vulnerabilities < 5

 0 otherwise

Class(x)={secure if vulnerabilties <5,

insecure otherwise}

The data set is divided into the “fit”

dataset that will be used to train the

classifier and “test” data set that will be

used to test the effectiveness of the

classifier. Out of the 132 modules selected

for the study, 72 where put in the “fit”

dataset and 60 in the “test” dataset. Out of

72 modules in the “fit” data set 47where in

the “secure” class and 25 were in the

insecure class. Out of 60 modules in the

“test” dataset, 48 where in the “secure”

class and 12 were in the “insecure” class.

This is followed by building a GP model

as described below.

4.BUILDING THE GP

MODEL

The first challenge to be addressed when

applying GA is solution encoding by

chromosomes. In this work, each

chromosome consist of the values of the

metrics(each metric has value in the range

0 to 1) considered for the study.

The second challenge is the selection of a

fitness function. The fitness function

chosen is based on the one used in [1]-

N1+c*N11+2*N111 where N1 is the

number of class 1 misclassifications, N11

is the number of class 2 misclassification

and N111 is the number of modules with

very high predicted values for number for

vulnerabilities. The cross-over probablity

was set at 0.8 . The number of generations

was capped at 150 and the population size

was at 100.

The best model is the one that yields the

lowest number of overall

misclassifications while at the same time

most balanced number of class1 and class2

misclassifications. The stochastic process

of training creates a lot of difficulties in

selecting the best model produced by GA

because of issues like over-fitting. Over-

fitting occurs when the model performs

very well with the fit dataset but not so

well with the test dataset. To avoid this

problem,we followed the random subset

selection(RSS) approach outlined in where

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 26

a different random subset of the fit dataset

is taken for each generation.

5.SELECTING THE

BEST MODEL

We run the experiment with values of c

from 1 till 2 in steps of 0.2 yielding 6 runs.

For each c value the top 2 individuals are

selected yielding 12 individuals. The

fitness of the 12 individuals is recalculated

based on the entire fit dataset as we have

resorted to RSS and only a random susbset

is taken for each run. Based on the

calculated fitness values, the best model is

selected for each c value based on the

criterion of yielding the lowest total

misclassification and most balanced

number of class 1 and class 2

misclassification. From the 6 best models

selected each c value, the best model is

chosen again using the same criteria.

6.RESULTS AND DISCUSSION

The results for the fit and test data sets for

various values of c are tabulated below.

RESULTS FOR THE FIT DATA SET

C CLASS1 CLASS2 overall

1 7

14.89%

5

20%

12

16.67%

1.2 11

23.40%

3

12%

14

19.44%

1.4 13

27.66%

4

16%

17

23.61%

1.6 11

23.40%

6

24%

17

23.61%

1.8 12

25.53%

9

36%

21

29.17%

2.0 13

27.66%

8

32%

21

29.17%

RESULTS FOR THE TEST DATA SET

C CLASS1 CLASS2 overall

1 3

6.38%

1

4%

4

5.55%

1.2 3

6.38%

3

12%

6

8.33%

1.4 3

6.38%

2

8%

5

6.94%

1.6 7

14.89%

2

8%

9

12.5%

1.8 5

10.64%

2

8%

2

9.72%

2.0 4

8.51%

3

12%

7

9.72%

As can be observed the “best” model as

per our definition was obtained at c=1.6

for the “fit” data set which yields a overall

misclassification rate of 23.61% note that

lowest misclassification rate was 16.67%

obtained for c=1. But this does not possess

the “balanced” property and hence not

considered as the best. For the “test” data

set the best results were obtained for c=1

that yielded an overall misclassification

rate of 5.55% . The performance of GA

has been significantly better for the “test”

set.

7.CONCLUSION AND

FUTURE WORK

As a result a genetic algorithm is

developed to classify software’s quality

into secure and non-secure groups based

on metrics. The results are quite promising

and are expected to be of great utility by

software practitioners. This work can be

even more developed by adding extra

functions like recall and precision etc.

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 6; June -2014

 www.ijcrd.com Page 27

8.REFERENCES

1. Liu and khoshgoftaar (2001)

“generic programming model for

software quality classification”

proceedings of the 6
th

 IEEE

international symposium on high

assurance systems engineering.

2. K ganesan ,TM khoshgoftaar and

EB allen “case based software

quality production” International

journal of software engineering and

knowledge engineering

3. Witty R(2002) “successful

elements of an information security

risk management program” gartner

symposium ITxpo, U.S,

symposium/ITxpo, orlando,Florida.

4. Sumithra A ,”software security risk

classification algorithmic

approach”, proceedings of

International conference on

application of optimization

techniques in engineering.

