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ABSTRACT- The CORDIC method is the most versatile of all the algorithms that can be used to compute 

elementary functions. The way of computing sine and cosine of angles, involves in multiplication free, thus power 

efficient and which results in regular architecture and less complicated routing, consequently less area, 

simultaneously lead to high throughput. For that purpose CORDIC seems to be a best solution. CORDIC offers a 

unified iterative formulation to efficiently evaluate the trigonometric function using rotation operation. This can be 

achieved by rotating a vector by an angle to form a newly rotated vector, introducing scaling factor. In order to 

achieve simplicity of hardware realization and benefits over basic CORDIC, CORDIC is designed by eliminating 

scaling factor. Here, scaling free CORDIC is proposed in order to compare with basic CORDIC. The proposed 

Scaling free is integrated with DFS (Direct Frequency Synthesizer) architecture so as to generate sine and cosine 

waveform from the values generated in each iterations. The proposed design computes sine and cosine of angles and 

thus maintains the regularity of basic CORDIC structure. The generated sine and cosine waveforms called DDS 

(direct digital synthesis) thus has wide applications in the field of RF signal processing, satellite communications 

etc.. The CORDIC structure is implemented in Xilinx FPGA.  

Keywords:Coordinate rotation digital computer (CORDIC), Digital frequency synthesis (DFS) 

1. INTRODUCTION 

CORDIC (for COordinate Rotation Digital Computer), is a simple and efficient algorithm to calculate trigonometric 

functions, also known as the digit-by-digit method or Volder's algorithm. It is commonly used when no hardware 

multiplier is available (e.g., simple microcontrollers and FPGAs) as the only operations it requires are addition, 

subtraction, bit shift. It comprises a special serial arithmetic unit having three shift registers, three 

adders/subtractors, and special interconnections. 

 CORDIC computes a number of functions including sine and cosine of angles. Since, CORDIC architecture 

is multiplication free(adder/subtractor as the main computational block), it has been used as a basic unit of 

computation in the implementation of different algorithms like discrete cosine transforms (DCT), discrete Hartley 

transform (DHT), fast Fourier transform (FFT), etc. The advantage of this algorithm is that it uses  minimal 

hardware (adder and shift) for computation of all trigonometric and other function values and so performance is 

high. Thus, almost all scientific calculators use CORDIC algorithm in their calculations. This algorithm was 

implemented when Jack Volder developed CORDIC algorithm in 1959 to calculate the trigonometric relationships. 

Through careful selection of the scale factor, Arc Tangent Radix, and initial conditions, Volder was able to develop 

a family of iterative equations that only required shifts and adds to calculate the trigonometric functions in a 

deterministic number of operations. 

 In regular CORDIC VLSI structure, ROM is used to store the precomputed values of arctangents. 

However, ROM based design is not preferred because ROM has slow speed (ROM access time) and more power 

consumption.  Ever since the CORDIC algorithm was developed, there have been many attempts to solve the 

drawbacks, which are the latency of computation and the dependency of a scaling factor. Scaling free CORDIC is 

one such relying on Taylor series expansion, decreasing the required number of iterations.  

However, the scaling factor is one of the major drawbacks with the Basic CORDIC algorithm, in particular 

when optimizations or extensions to the algorithm are considered. The motivation for including this into analysis is 
that it performs particularly well for evaluation of cosine and sine and is therefore useful as a reference. The scaling 

free CORDIC algorithm removes the need of scaling factor and hereby making it possible to skip some of the 

iterations if they are not needed, there by overcoming latency problem of basic CORDIC. The values obtained in 

each iteration of scaling free CORDIC  is fed as input to the digital frequency synthesizer. There by generating 

waveforms according to the angles generated in each iterations. CORDIC algorithm is one of the technique to 

generate carrier wave in communication system to perform modulation and demodulation. Digital Frequency 

Synthesizers also termed as Direct digital synthesizers (DDS), are a class of frequency synthesizers in digital 

domain, which generate waveforms of some frequencies. Sometimes also called numerically controlled oscillators 
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(NCO), these generate waveforms like sine, cosine, triangular, square or rectangular, saw tooth, etc. These have 

wide applications in satellite communication systems, RF signal processing, etc. DDS offers many advantages over 

analog oscillators such as extremely precise tuning resolution of the output frequency, fast hopping of phase which 

reduces phase related errors, remotely controllable, better match of quadrature outputs when required, etc.  

2. CORDIC METHODOLOGY 

CORDIC works by rotating the coordinate system through constant angles until the angle is reduced to zero. So with 

this principle the given angle is changed each time to reduce to zero. Here addition, subtraction and shift operations 

are used to calculate the function values. All the trigonometric functions can be computed or derived from functions 

using vector rotations. The CORDIC algorithm provides an iterative method of performing vector rotations by 

arbitrary angles using only shift and add operations. The algorithm is derived using the general rotation transform. 

 
Fig.2.1 Rotation of a vector V by an angle  φ 

If a vector V with components x and y is rotated with an angle φ ,the new vector v’ with components 

(x’,y’) formed is as shown in Fig.2.1. The objective is to find the new vector coordinates (x’, y’), which are identical 

to the cos and sin values which can be derived using the general rotation transform by and the equations for x and y 

coordinate is given by 

                                                                                                                                                                                              

 

     
i

i 1 i i i ix K (x d y 2 )

  
                                                                                                                2.1                       

i

i 1 i i i iy K (x d y 2 )

  
                                                                                                                               2.2               

 

where di  is the direction of rotation , di  is  1,  if  zi ≥0  else (-1). From equation 2.1 and 2.2, each iteration is 

multiplied with Ki which is denoted as scaling factor. Removing the scaling factor yields an iterative shift-and-add 

algorithm for vector rotation. However, the scaling factor is still one of the major drawbacks with the CORDIC 

algorithm, in particular when optimizations or extensions to the algorithm are considered. The scaling-factor Ki, 

after sufficiently large number of iterations converges to a constant value 0.607. A third iterative component shown 

in equation 2.3 is needed to keep track of the rotations of the angle. The rotations are accumulated with the help of a 

lookup table holding the values of  αi = atan(2
-i
).

    
i

i 1 iz z a tan(2 )

  
                                                                                                                                                     2.3

 

atan (2
-i
) in equation 2.3

 
can be written as αi , Parameter αi  is angle by which a vector is rotated in i

th
  step. These are 

called Arctangent values, which are constant and they are stored in ROM.  From the above equations CORDIC can 

be modeled as shown in below figure 2.2.  
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Fig.2.2 Basic architecture of CORDIC processor 

For the iteration to go from i
th 

stage to (i+1)
th

 stage, the sign of Zi has to be predetermined. Adder/subtractor is the 

only computational unit in Z- datapath, latency of this architecture is determined by the latency of the 

adder/subtractor module. Depending on the sign of the input angle, the adder/subtractor adds or subtracts. The 

shifter shifts according to i
th

 value. 

3. IMPLEMENTATION OF SCALING FREE CORDIC 

Scaling free can also be implemented with only shift and add operations. The  scaling free algorithm does only 

perform rotations in one direction. The accumulation of the angle for the scaling free algorithm does not need a 

lookup table. This means a decrease in the number of iterations, since it can skip unnecessary iterations and also 

elimination of scale factor. Here the scaling free CORDIC itself is going to generate the arctangents through micro 

rotations when compared to basic CORDIC. The starting point for the scaling free algorithm uses a Taylor series 

expansion of cos x and sin x. The proposed design is based on the following key ideas: 1) Taylor series expansion of 

sine and cosine functions are used to avoid scaling operation and 2) suggest a generalized sequence of micro-

rotation. The angle is partitioned into smaller rotations  like the basic CORDIC, and if the rotations are small enough 

then one scaling free rotation can be approximated as which means that Scaling-free CORDIC was the first attempt 

to completely dispose of the scale-factor. Here, the sine and cosine functions were approximated using the first order 

of Taylor series to equation 3.1 as 

                                                

2
(2i 1)i

i

i

i i

cos 1 1 2
2!

sin 2

 




    

   

                  3.1                                                                                                                         

Unlike the conventional CORDIC algorithm, in the scaling free CORDIC algorithm, the final target angle is 

achieved by rotating the vector in one direction only. This means that the final target angle is approximated as a pure 

summation of the elementary angles. Design of CORDIC processor is divided in two main parts, the Arithmetic 

Calculation Modules and Shift Calculation Modules. 

3.1 Arithmetic Calculation Modules 

The expansion of the  Taylor series approximation, is in the below equation 3.3.                                           
1 2 3 3

i 1 ii i i

3 3 1 2
i 1 ii i i

X X(1 (2 ) ) ( 2 )

Y Y2 (1 (2 ) )

 


 


           
      

                                                                                                            3.2                                

 

            Assuming αi = 2
-si

 and approximation of factorial, these are expressions for Micro-Rotations Using Taylor 

Series Approximation and Factorial Approximation. The arithmetic calculation modules were used in implementing 

the above equation 3.2 as shown in Fig.3.1. 16-bits register is used at the end of the module for synchronization 

purpose. This module was implemented by using fixed point format. 16-bits used for the xi and yi input. The value 

of si obtained from the shift calculation module. The output of this module will be used as input to the next iteration, 

and the iteration continues until the counter is reset to zero. This is used to find the x and y coordinates in the 

coordinate calculation unit. Here Taylor series is used for coordinate calculation. 

3.2 Shift calculation module 

The fixed point format of the elementary angle (αs) has one bit set and represented by αsi = 2
-si

. The first one bit 

number of any input string counting from the Most Significant Bit (MSB), M is used for further calculation of shift 

iteration (si), for a fix word-length (N). Si of the elementary angle was given by equation 3.3 as 

Si = N-M                                                                                                                                                                     3.3 

In this, the word-length is fixed to 16. The module’s input is the angle to be rotated, theta (θi). The 

elementary angle (α) is corresponding to the basic shift (s). Basic shift was the  first elementary angle for rotation α. 

The expression for the basic shift is as stated in equation 3.4 as 

       2logb
basic shift,s

n

n 1 !

1

 
   

                                                                                     3.4                                               
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Where b is the word length and n is the total number of iterations. In shift calculation module, multiple iteration of 

shift is performed. Shift calculation module is used to get the shift index (si) parameter. The operation begins to get 

the first 1 bit from the MSB (M). The code for generating micro rotation sequence is as shown below: 

Input: angle to be rotated(θi) 

Begin  

M= mostsignificant-1 location of θi 

α= 0.25 radians 

shift si=2 and θi+1= θi-α 

else  

shift si=16-M 

θi+1= θi with θi[M]=’0’ 

end 

Fig.3.1 shows the architecture of the proposed scaling free CORDIC processor. The block diagram for the proposed 

CORDIC architecture can be explained as; it makes use of the same stage for all the iterations for the coordinate 

calculations, as well as for the generation of shift values. The data to be found out is saved upon mux selection and 

is fed to stage.  

 
Fig.3.1 Architecture of proposed scaling free cordic 

The structure of stage block is as shown in Fig.3.2. Here x and y coordinate is calculated from the coordinate 

calculation unit, micro rotation sequence generation block generates new theta and shifted value required for the 

next iteration. The output of stage is fed as input to the next iteration upon mux and counter and the iteration 

continues until the counter is reset to zero. The expiry of the counter indicates the completion of a CORDIC 

operation.  

 

Fig.3.2 Block diagram of each stage 

The combinatorial circuit for the evaluation of desired shift values is shown in Fig.3.3 
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Fig.3.3 Circuit for generating the shift values 

The combinatorial circuit for generating the micro-rotation sequence is shown in Fig.3.4. 

 

Fig.3.4. Micro-rotation sequence generation 

3.3 Micro-Rotation Selection 

The proposed micro-rotation sequence in Fig.3.4 can be explained as, multiple iterations of basic-shift are 

performed, followed by non-repetitive unidirectional iterations of the micro-rotations corresponding to other shift 

indices, to minimize the number of iterations . 

A. Micro-Rotation Sequence organization 

In the proposed scheme, the rotation angle “θ” is represented as 

1 s si

i 0

n . 


                                                            3.5 

where n=n1+n2, αs is the elementary angle corresponding to the basic-shift, αsi are elementary angles for other shifts, 

n 1 and n2 are non-negative integers and n represents the total number of iterations. If any micro-rotation of angle αs 

is not used then  n 1 is zero, and n 2=n. On the other hand, if the desired angle of rotation “θ” is a multiple of αs then n 

2 is zero and n 1=n. 

B. Defining the Elementary Angles 

The elementary angles αs and αsi  are given by 

  αs=   2
-s
,     αsi=2

-s                                                                                                                                                 
3.6

 
 

where, s is the basic-shift and si>s is the shift for ith iteration. For basic-shift=2, αs = 7π/88 and for basic-shift 3, αs = 

7π/176. 

C. Generalized Micro-Rotation Sequence Identification 

The micro-rotations are identified depending on the bit representation of the desired rotation angle in radix-2 system 

using most-significant-1 detector. For this, the maximum rotation angle is restricted to π/4 radians as the entire 

coordinate space [0,2π ] can be mapped to the [0, π/4] using octant symmetry of sine and cosine functions. If the 

most-significant-1 location (M) of the rotation angle “θ” is smaller than the basic-shift “s”, elementary angle of the 
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basic-shift would be used for the CORDIC iteration. For a fixed word-length of N-bit, the shift si for the elementary 

angle is given by Si=N-M. 

 This is how the scaling free CORDIC works. Here the values obtained in each iteration are fed as input to 

the direct digital synthesizer in terms of frequency control word. There by generating waveforms according to the 

angles generated in each iterations. 

3.4 Digital Frequency Synthesizers 

Simplified form of DFS is shown in the below Fig.3.5. It consists of a phase accumulator and a phase to amplitude 

converter (conventionally a sine ROM). The phase accumulator consists of a j bit frequency register, which stores a 

digital phase increment word followed by a j bit full adder and a phase register. The digital phase increment input 

word is entered in the frequency register. This data is added to the data previously held in the phase register at each 

clock pulse. The phase increment word represents a phase angle step that is added to the previous value at each 

(1/fclk) second to produce a linearly increasing phase value as shown in the Fig.3.5 (b).The phase is generated by 

modulo 2 
j 
overflowing property of a phase accumulator. The rate of overflow is consider as the output frequency, 

which is expressed as                           clk clk
out outj

Pf f
f f

2 2


  

                                                       3.7                                                                   

 

where ∆P is the phase increment word, j is the number of phase accumulator bits, f out  is the output frequency and  

fclk is the clock frequency. The constraint in the above equation 3.11 comes from the sampling theorem. Frequency 

resolution is found by setting ∆P =1 as the phase increment word is an integer, as 

 
clk

j

f
f

2
 

                                                                      3.8             

 

Digital phase information is converted into the values of a sine wave from the ROM, which is the look-up table. 

                  

 
Fig 3.5 DFS block diagram and wave shapes 

3.4.1 Blocks of Digital Frequency Synthesizer 

A. Phase Accumulator 
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A clock with frequency fclk  is the synthesizer’s only time reference. The phase accumulator’s output is a ramp 

value, as it overflows to 0 periodically. For an N-bit accumulator, the frequency of the ramp is given by 

frequency control word
f fout nk

X
cl

2



                                                                                                             3.9                                    

 

 Every value at the output of the phase accumulator is converted to approximated sine amplitude by a phase-

to-sine amplitude converter. 

B. Phase to Amplitude Converter 

The spectral purity of the DFS is estimated by the values stored in the sine table ROM. Hence can increase the 

resolution of the ROM. But as ROM storage increases lower the speed, increased power consumption and greatly 

increased costs. By storing only π/2 radians of sine wave information compression can be achieved and to generate 

the ROM samples for the full range of 2π by exploiting the quarter wave symmetry of the sine function. 

  One of the approaches to the phase-to-sine amplitude mapping is the CORDIC algorithm, which is an 

iterative computation method. But there is increased circuit complexity, cost and distortions that will be generated, 

when the methods of memory compression are employed. Technique to store only π / 2 radians of sine information 

and to generate the sine look-up table samples for the full range of 2π is as explained in the exploitation of sine 

function symmetry. 

 
Fig.3.6 Detailed diagram of DFS 

3.4.2 Exploitation of Sine Function Symmetry 

Technique to store only π / 2 radians of sine information and to generate the sine look-up table samples for the full 

range of 2π quarter-wave symmetry of the sine function is used. The decrease in the look-up table capacity is paid 

for by the additional logic necessary to generate the complements of the accumulator and the look-up table output, 

as shown in Fig.3.6. The two Most Significant Bit (MSB)s are used to decode the quadrant, remaining k-2 bits are 

used to address a one-quadrant sine look-up table. MSB determines whether the amplitude is increasing or 

decreasing. The accumulator output is used “as is” for the first and the third quadrants. The bits must be 

complemented so that the slope of the saw-tooth is inverted for the second and fourth quadrant. The sampled 

waveform at the output of the look-up table is a full wave rectified version of the desired sine wave as shown in 

Fig.3.6. The final output sine wave is then generated by multiplying the full wave rectified version by -1, when the 

phase is between π and 2π. 

3.4.3 Concept of the Architecture Used 

Instead of a ROM LUT, a hardware-optimized phase-to-sine amplitude converter used to approximate the first 

quadrant of the sine function with eight equal-length piecewise linear segments as shown in Table 3.1. The main 

goal is to maintain low system complexity and reduce power consumption and chip area requirements. The second 
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aim is to achieve a specified spectral purity, where spectral purity is defined as the ratio of the power in the desired 

frequency to the power in the greatest harmonic, across tuning bandwidth of the synthesizer. Spectral purity is an 

essential design parameter in communication systems for synthesizer, ensuring that undesired in-band signals 

remain below a given threshold and are not detected. In order to achieve the first goal, approximation of a sinusoid 

as a series of eight equal-lengths piecewise continuous linear segments si  is done in equation si(x), where 

( ) ( )
8

i i i

i
s x m x y                                               3.10                                          

 Where [0,7]i   is the slope of each segment and is carefully selected to eliminate the requirement 

for multiplication by representing each one as a sum of at the most two powers of two. Precision of slope 

representation, i.e., the difference between the smallest and the largest powers of two used can restrict, by putting an 

upper bound on the adder’s width. To reduce the control system circuitry costs equal length segments are selected. 

In order to obtain desired spectral purity, different sets of mi and yi coefficients are evaluated and the best one 

meeting the requirements is selected. 

3.4.5  Description of the Architecture 

Complete DFS architecture is shown in Fig.3.7, the coefficients are given in Table 3.1. The phase to sine amplitude 

converter block includes a 1’s complement to exploit quarter wave symmetry. This architecture is significantly less 

complex. It does not include a ROM, no multipliers or squaring circuits are required.To simplify the control 

circuitry equal length segments are used. Only three integers need to be added and multiplexers. The phase 

accumulator is of 20 bits wide,  truncated to 12 bits. The two MSBs are used for quadrant symmetry. Segment is 

identified by the next three bits. The remaining seven bits identify different sub-angles. The two upper multiplexers 

shift these remaining seven bits according to the slopes mi , listed in Table 3.1. 

Table 3.1 Linear segment coefficients 

i mi yi 

0 1+1/2 2/1024 

1 1+1/2 191/1024 

2 1+1/2 384/1024 

3 1+1/8 552/1024 

4 1 697/1024 

5 1/2+1/4 819/1024 

6 1/2 909/1024 

7 1/8 971/1024 

 The notation {>>n} shown in Fig.3.7 signifies a right shift by n bits, means division by 2
n
. The lower 

multiplexer selects the appropriate yi approximation listed in the table. The output from the multiplexers is of 13 bits 

wide, to account for the whole dynamic range of possible values. The three-operand adder sums the multiplexer 

outputs together and rounds the result to 7 bits.11111e main advantage of this architecture is that it does not depend 

upon the extensive use of ROM, as is normally the case with other commonly available architectures. Hence, it fits 

into a very small area on the chip. Fine frequency and phase resolution can be achieved using DFS. 
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Fig.3.7 DFS architecture 

 

4.RESULTS 

CORDIC has been implemented using FPGA hardware and by using verilog language. The synthesizer used here is 

Xilinx ISE and simulator used is Modelsim. The device used here is xc3s400-5pq208. Since verilog code is written, 

inputs and outputs are written in decimal format. Results of basic cordic  is shown below. 

 

Results of DFS : 

Cos30
0
=31653d(0.9659) 

866 

Sin(15
0
)=8479d(0.2587) 

Angle(15
0
) =8578d 
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Results of scaling free CORDIC: 

 

Results for integration of DFS in to scaling free CORDIC: 

 

5. CONCLUSION 

In this project a CORDIC module is designed and simulated using Xilinx ISE using Verilog as a synthesis tool. The 

output of the CORDIC core is analyzed and verified. The output values of basic cordic were found to be consistent 

with the actual values and also for scaling free with 0.2% error since it itself generates shift and theta values leading 

to less iterations. Scaling-free CORDIC algorithm provides an iterative calculation using only add and shift function 

for cosine and sine function calculation same as basic CORDIC. The elimination of redundant iterations using 

leading-one-bit technique improves the number of iteration compared to basic CORDIC. Less iteration offers faster 

Sine wave 

Sin(30
0
)=34649d(0.623) 

Cos(30
0
)=40844d(0.52) 

angle 30
0
= 34314d 

sine wave 

cos wave 

ANGLE(300)= 34314d 
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computation and optimal efficiency. The implementation of this scaling-free CORDIC will improved the 

performance of the application in term of efficiency and stability. 
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