
International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 13; Issue: 7; July- 2024

133 | P a g e

www.ijcrd.com

THE SERVER RIPPLING TECHNOLOGY SYSTEM IN CACHE

MEMORY

Mahesha S N

PG Student

Dept. of MCA

The Oxford College of Engineering,

Bommanahalli, Bengaluru-560068.

maheshasnmca2024@gmail.com

ABSTRACT:

The "Server Rippling Technology System in

Cache Memory" project aims to enhance the

efficiency and performance of server-side

caching techniques by putting a cutting-edge

method called Server Rippling into practice.

This technology is intended to maximize the

use of cache memory, lower latency, and

enhance the general dependability and speed

of data retrieval operations in server

environments. With Server Rippling

Technology (SRT), the cache memory is

divided into multiple segments, each of

which is controlled by a unique algorithm

designed to handle distinct kinds of data and

access patterns. Through dynamic

adjustments to cache segmentation and

replacement procedures based on real-time

workload characteristics analysis, SRT

guarantees that data that is requested

frequently is given priority and stored in the

cache for extended periods of time, while less

important data is effectively replaced and

managed. This study investigates the SRT

system's architectural design,

implementation, and assessment in a server

cache setting. powerful cache segmentation

strategies, resilient replacement rules that

adjust to shifting workloads, and powerful

machine learning algorithms for forecasting

data access patterns are essential elements.

By combining these elements, a highly

effective caching system that minimizes

cache misses, improves data locality, and

lightens the strain on backend systems is

intended to be created.

 Dharamvir

Associate Professor

Dept. of MCA

The Oxford College of Engineering,

Bommanahalli, Bengaluru-560068.

dhiruniit@gmail.com

Keywords: SRT, D-Cache, Server Ripple,

Virtual Key, Status Report.

1. INTRODUCTION:

The most recent SRT (Selective

Retransmission Technology) will be used in

this project to maximize data transmission

and reduce the volume of data traveling

across the network during peak hours. The

data will be segmented by the new system

using a virtual primary key setup and then

temporarily stored in a separate cache

memory. Data is stored in this cache memory

for a brief period of time.

A real-time updating dynamic storage system

is SRT. Data is saved in a connected format

as soon as the most recent version is received

from the distant server. The data will be

handled by the cache memory as though it is

disconnected, thus any changes made to the

server won't be reflected in the cached

version. As a result, the cache can only access

previous data.

SRT is a dynamic storage solution that

updates in real time. When the latest version

of data is received from the remote server, it

is stored in a connected format. However, the

cache memory will handle the data as

disconnected, meaning any updates from the

server won't be reflected in the cached

version. Consequently, only historical data is

accessible from the cache.

The latest version of the data is stored in a

connected format when it is received from the

remote server via SRT, a dynamic storage

solution that updates in real time. The data is

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 13; Issue: 7; July- 2024

134 | P a g e

www.ijcrd.com

treated as disconnected by the cache memory,

so any updates from the server will not be

reflected in the cached version, and only

historical data is available from the cache.

The SRT system makes sure that the most

recent data is always obtained straight from

the server in spite of this. Users will

consequently continuously access current

data, preventing disparities brought about by

out-of-date cached data.

Every time a new transaction is started, as

shown in the diagram below, a new server

rippling is started. In a distributed cache,

transaction data is added and maintained

over several branches. The rippling

mechanism is divided into two layers: Data

1 through n are specific data, and the virtual

key, such as 10, is kept in the first layer. The

unique transaction number is identified with

the aid of the virtual key, such as 10.

Two identical transactions that occur

simultaneously will be processed by the

same bank using different virtual keys (10

for the first transaction and 11 for the

second). The sub-ripples formed during

these transactions will, however, continue

to have the same reference numbers.

For example, when we conduct a

withdrawal transaction using key 10,

information about server balance checking,

balance finding, and updating the balance

depending on security and cheque rates will

be updated on the rippling panel. This data

will be removed from the cache after the

transaction is finished to make place for the

subsequent one. The ripple code can be

released, and then the same virtual key can

be used for other transactions.

2. LITERATURE REVIEW

A literature survey is an assemblage of

systematic instructions or protocols that have

to be adhered to when undertaking research

on a certain topic. a comprehensive and

rigorous search over all published topics on

the problem prior to suggesting a custom

project or system. Our distinctive literature

report or paper is aided in its preparation by a

thorough examination of all existing systems

and a study of the literature. This literature

study helps us identify numerous relevant or

related records in line with our proposed

research survey.

For a considerable time, cache memory has

been an essential part of computer

architecture, serving as a link between fast

processors and slower main memory. The

fundamental ideas of cache memory were

first explored by Smith (1982), who also

highlighted the function of cache memory in

short-term data storage for frequently visited

files in order to lower latency and enhance

system performance. The focus of later

developments has been on improving cache

structures and algorithms to increase

throughput and reduce cache misses.

Conventional cache replacement strategies

have been thoroughly examined and applied

in a variety of systems, including Least

Recently Used (LRU), First-In-First-Out

(FIFO), and Random Replacement.

According to Abramson (1970), FIFO

replaces the oldest data regardless of access

frequency, whereas LRU prioritizes keeping

the most recently accessed data. Even while

these policies are straightforward and have

respectable performance, they frequently

can't handle the intricate and dynamic

access patterns found in contemporary

applications.

By separating the cache into manageable

portions, segmentation approaches have

been investigated as a means of enhancing

cache management. By striking a balance

between complexity and flexibility, Hill and

Smith (1989) developed the idea of set-

associative caches, which outperformed

completely associative and direct-mapped

caches. More precise control over data

storage and retrieval is made possible by

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 13; Issue: 7; July- 2024

135 | P a g e

www.ijcrd.com

segmentation, which may also lower

conflict misses and enhance cache

performance overall.

Machine learning techniques have recently

been used to optimize cache management

and forecast data access patterns. Predictive

algorithms can be used to prefetch data into

the cache, decreasing cache misses and

speeding up access times, as proven by

Zhuang and Shen in 2007. These methods

increase the effectiveness of cache

replacement strategies by using past access

data to train models that can predict future

accesses.

2.1 EXISTING SYSTEM

As was already mentioned, the cache

memory of the existing system is capacity-

limited and intended for short-term use. A

server error indicating an overload will

appear when the amount of incoming data

surpasses this capacity. Previously, TFS

servers or IIS with SQL-based tables were

used to handle numerous checks or online

transactions requiring more data storage.

DISADVANTAGES OF EXISTING

SYSTEM

Cache Memory Overload: The temporary

storage frequently runs out because of the

large number of transactions the bank

processes per minute. The cache memory

gets overflowed when more information is

added.

Cost Implications: Application storage

memory usage can rise and prices can go up

when multiple online transactions requiring

additional data storage are handled by TFS

servers or IIS with SQL-based tables.

Delayed Data Retrieval: As a result of these

storage and capacity problems, the system

can have trouble retrieving the most recent

data. The Memory is Always Managed by

The Current System.

After the transaction goes through all

authorization stages, it needs about 1 GB of

RAM, assuming that every online transaction

uses 1 GB of memory. One gigabyte of RAM

is not consumed if a transaction is refused at

the first step because the signatures do not

match or the magnetic ink reading fails. Even

though it isn't needed for the transaction, this

unused memory is known as dead memory.

2.2 PROPOSED SYSTEM

Server Rippling Technology effectively

handles transaction data in the newly

suggested system. The drive filter is

activated.by the programmer at transaction

initiation; it functions as a distributed cache

to store data.

Figure. 1: Data Division

Here’s how the system manages data:

Virtual Key Usage: A virtual key, like 10,

for instance, connects various data segments.

A piece of data that is too big is split up into

smaller pieces, such as Data A and Data B,

and they are all connected to the same virtual

key, 10.

Handling Excess Data: Incoming data is

divided among several caches if it surpasses

one cache's capacity. Within these caches,

all relevant data can be effectively linked

since every cache branch keeps the same ID.

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 13; Issue: 7; July- 2024

136 | P a g e

www.ijcrd.com

Present Data Display: By rapidly obtaining

the most recent data from the server, the SRT

system makes sure that the most recent data

is always visible. This method improves

system responsiveness and the freshness of

the data.

Huge and Dynamic Data Storage: Using

this technique, the system may effectively

manage huge and dynamic data within cache

storage.

3. FEASIBILITY STUDY:

The Server Rippling Technology method

suggests partitioning cache memory into

discrete regions that are supervised by

sophisticated algorithms customized for

particular data kinds and access behaviors. In

order to anticipate and adjust to variations in

workload in real time, this method

incorporates machine learning approaches

with well-established cache segmentation

principles. Technically speaking, a solid

grasp of cache architectures, predictive

analytics, and adaptive replacement

strategies is necessary for the creation and

integration of SRT. There is a high degree of

technological feasibility because current

server hardware and software platforms are

sufficiently sophisticated to support these

requirements. The project will make use of

current technologies, guaranteeing that the

required infrastructure and tools are

available. These technologies include set-

associative caches, predictive prefetching

techniques, and adaptive caching

frameworks.

Figure.3 Feasibility study

4. SYSTEM DESIGN

System design encompasses the methods

and procedures utilized in the design phase

to produce each component of the system.

This includes determining modules,

architectures, features, and other

components. It offers a graphic

representation of the entire process and

explains the data flow architecture of the

system.

Our System is designed to integrate with the

architecture of bank transactions. The

customer needs a bank gateway in order for

their bank to process an online payment.

Customers will ask for the gateway for that

particular bank, for instance, if they are

finished with an online purchase and want

to pay with their bank. Currently involved

are three banks. Since all three banks'

details cannot fit in the single cache

memory at once due to its limited capacity,

the data will be downloaded from the server

and stored in a distributed cache (D cache).

Figure.4 Architecture diagram

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 13; Issue: 7; July- 2024

137 | P a g e

www.ijcrd.com

5. MODULE DESCRIPTION

IMPLEMENTATION

To access the application, Using their

assigned username and password, users must

first log in. The application and its

functionalities become accessible to them

once they input the proper credentials. The

admin home page allows administrators to

examine, pick, and edit client transaction

requests. It supports four different user roles,

each of which has a unique set of activities

and permissions that the admin can oversee.

To have total control over all system

functions, the administrator can browse

through numerous areas of the application,

each of which outlines particular duties and

obligations. The system uses a process

known as Server Ripple when handling large-

scale transactions. Before a large transaction

is started, its details are pulled from the server

and cached in multiple memories. The

segmentation process may involve the

storage of data in separate caches, like Bank

1, Bank 2, and Bank 3. Managing transaction

data efficiently is the aim of this distribution,

especially when managing large volumes of

online transactions. The system handles this

data further using the Break Through Ripple

technique after transaction information has

been initially stored in the cache memory.

This means that the data is retrieved and then

divided into smaller pieces, which are stored

in a memory known as distributed cache (D-

cache). If a piece of data is small enough to

fit in the available cache memory, it is saved

exactly. A distribution mechanism is required

for larger data collections in order to offer

optimal storage and access. Facilitating users'

online transactions is the goal of the customer

page. A customer can visit this website, for

example, to view their alternatives and

expedite the completion of their transaction if

they wish to pay online. Thanks to this page's

user-friendly style, customers may manage

their online payments and related activities

with ease.

Figure.5 Server connection and source bank

details page

Figure.6 Destination and my bank details

page

Figure.7 D-cache storage page

6. DISCUSSION:

The outcomes show how successfully the

SRT system optimizes cache performance.

Large and dynamic data may be handled by

the system with efficiency, as seen by the

decreased cache miss rate and data retrieval

time. The results validate the use of SRT in

server contexts to improve data retrieval

functions.

http://www.ijcrd.com/

International Journal of Combined Research & Development (IJCRD)

eISSN:2321-225X; pISSN:2321-2241 Volume: 13; Issue: 7; July- 2024

138 | P a g e

www.ijcrd.com

7. CONCLUSION

This technology, which effectively blends

Front-End ASP.NET with Back-End SQL,

will make it easier for customers and the

particular application designed to manage

temporarily enormous data volumes to

utilize. The most recent advancement in

cache memory architecture is this system.

Frequently employed in the banking industry,

which produces copious amounts of data

every second, SRT systems are especially

helpful when conducting transactions online.

SRT systems provide many benefits, as banks

handle enormous amounts of data with every

transaction. By effectively dividing and

storing vast amounts of data kept in cache

memory, getting the most recent data from

the server, and controlling dynamic storage,

they assist in mitigating some of the sector's

difficulties. This technique speeds up

transaction processing, improves system

dependability, and eliminates the need for

extra software for temporary data storage.

8. FUTURE ENHANCEMENT

By resolving some of the major issues facing

the banking industry, the SRT system's

implementation provides numerous

advantages. Transaction speed is increased,

the need for additional software to store

temporary data is decreased, and system

faults are minimized because to the system's

capacity to partition and store huge quantities

of data quickly in cache memory, obtain the

most recent data from the server, and handle

dynamic storage. Though the technology

increases productivity, preserving security is

still a major worry. Given the sensitivity of

private client information and the interaction

with many financial servers, secure access to

the server's data is important. Furthermore,

banks usually aren't able to authenticate or

grant access to another bank's server, which

makes it difficult to have access authority.

This makes it difficult to implement SRT

systems across several institutions.

REFERENCE

[1]. Dimitris Kaseridis, Jeffrey Stuecheli and

Lizy K. John, “Bank-aware Dynamic Cache

Partitioning for Multicore Architectures”

2005.

 [2] Ugah John Otozi, Chigozie-Okwum,

Chioma, Ezeanyeji Peter C, and Mbaocha

Nnamdi Raymond, “Virtual and Cache

Memory: Implications for Enhanced

Performance of the Computer System” Oct-

2018.

[3] Xiaoguo Wang, Yuxiang Liu and Lin

Zhang, “Research on the Application of Bank

Transaction Data Stream Storage based on

HBase” 2016.

[4] Shailak Jani, “An Overview of Ripple

Technology & its Comparison with Bitcoin

Technology” January-2018.

[5] Alan Jay Smith, “Cache Memories” 3,

September 1982.

[6] Daniel Rodrigues Carvalho and André

Seznec, “Understanding Cache

Compression” June 2021.

[7] Dong Dai, Xi Li, Chao Wang, Mingming

Sun and Xuehai Zhou, “Sedna: A Memory

Based Key-Value Storage System for

Realtime Processing in Cloud” IEEE

International Conference 2012

[8] jatau Isaac Katuka, Gabriel Lazarus

Dams, and Salome Danjuma, “Architectures

and Technologies of Cache Memory:

A Survey” IJASCSE, Volume 3, Issue 1,

2014.

[9]Shashikiran Venkatesha,Ranjani Parthasa

rathiAuthors Info & Claims, “Survey on

Redundancy Based-Fault tolerance methods

for Processors and Hardware accelerators -

Trends in Quantum Computing,

Heterogeneous Systems and Reliability” 28

June 2024.

http://www.ijcrd.com/
https://dl.acm.org/doi/10.1145/3663672
https://dl.acm.org/doi/10.1145/3663672
https://dl.acm.org/doi/10.1145/3663672
https://dl.acm.org/doi/10.1145/3663672#tab-contributors

